Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology
Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide–protein or protein–protein interactions, de novo designed polypeptides that can bring together other proteins con...
Gespeichert in:
Veröffentlicht in: | ACS synthetic biology 2023-06, Vol.12 (6), p.1845-1858 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1858 |
---|---|
container_issue | 6 |
container_start_page | 1845 |
container_title | ACS synthetic biology |
container_volume | 12 |
creator | Smith, Abigail J. Naudin, Elise A. Edgell, Caitlin L. Baker, Emily G. Mylemans, Bram FitzPatrick, Laura Herman, Andrew Rice, Helen M. Andrews, David M. Tigue, Natalie Woolfson, Derek N. Savery, Nigel J. |
description | Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide–protein or protein–protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells. |
doi_str_mv | 10.1021/acssynbio.3c00231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10278171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819276749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-2be3bbc7325da9b7ca494a9eb6989290c4db973842211ec25de96b8c757f6b703</originalsourceid><addsrcrecordid>eNp9kUtPAyEUhYnRqFF_gBszSzdTec0wrIzvmph0UV0TYO5UzBQqTE3qrxfT2uhGNpdwz_kuORehU4JHBFNyoW1KK29cGDGLMWVkBx1SUpOywjXb_XU_QCcpveF8qopVrNlHB0xQyjmXh2hyC8nNfKF9W0yhBzu44IvQFWMYIIbWzSG6T-dn-aF3VvfFWLu4cD4VXYjFdOWHVxicLa5d6MNsdYz2Ot0nONnUI_Ryf_d8My6fJg-PN1dPpeasGUpqgBljBaNVq6URVnPJtQRTy0ZSiS1vjRSs4ZQSAjarQNamsaISXW0EZkfocs1dLM0cWgt-iLpXi-jmOq5U0E797Xj3qmbhQ-XsREMEyYTzDSGG9yWkQc1dstD32kNYJkUbIqmoBZdZStZSG0NKEbrtHIK_gURtl6E2y8ies98f3Dp-os-Cci3IXvUWltHnvP4BfgGYyphe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819276749</pqid></control><display><type>article</type><title>Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology</title><source>American Chemical Society Journals</source><creator>Smith, Abigail J. ; Naudin, Elise A. ; Edgell, Caitlin L. ; Baker, Emily G. ; Mylemans, Bram ; FitzPatrick, Laura ; Herman, Andrew ; Rice, Helen M. ; Andrews, David M. ; Tigue, Natalie ; Woolfson, Derek N. ; Savery, Nigel J.</creator><creatorcontrib>Smith, Abigail J. ; Naudin, Elise A. ; Edgell, Caitlin L. ; Baker, Emily G. ; Mylemans, Bram ; FitzPatrick, Laura ; Herman, Andrew ; Rice, Helen M. ; Andrews, David M. ; Tigue, Natalie ; Woolfson, Derek N. ; Savery, Nigel J.</creatorcontrib><description>Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide–protein or protein–protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.3c00231</identifier><identifier>PMID: 37224449</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS synthetic biology, 2023-06, Vol.12 (6), p.1845-1858</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-2be3bbc7325da9b7ca494a9eb6989290c4db973842211ec25de96b8c757f6b703</citedby><cites>FETCH-LOGICAL-a438t-2be3bbc7325da9b7ca494a9eb6989290c4db973842211ec25de96b8c757f6b703</cites><orcidid>0000-0001-9916-0255 ; 0000-0002-1593-5525 ; 0000-0002-0394-3202 ; 0000-0002-1318-3366 ; 0000-0002-4879-612X ; 0000-0002-0803-4075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.3c00231$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.3c00231$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37224449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Abigail J.</creatorcontrib><creatorcontrib>Naudin, Elise A.</creatorcontrib><creatorcontrib>Edgell, Caitlin L.</creatorcontrib><creatorcontrib>Baker, Emily G.</creatorcontrib><creatorcontrib>Mylemans, Bram</creatorcontrib><creatorcontrib>FitzPatrick, Laura</creatorcontrib><creatorcontrib>Herman, Andrew</creatorcontrib><creatorcontrib>Rice, Helen M.</creatorcontrib><creatorcontrib>Andrews, David M.</creatorcontrib><creatorcontrib>Tigue, Natalie</creatorcontrib><creatorcontrib>Woolfson, Derek N.</creatorcontrib><creatorcontrib>Savery, Nigel J.</creatorcontrib><title>Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide–protein or protein–protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells.</description><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPAyEUhYnRqFF_gBszSzdTec0wrIzvmph0UV0TYO5UzBQqTE3qrxfT2uhGNpdwz_kuORehU4JHBFNyoW1KK29cGDGLMWVkBx1SUpOywjXb_XU_QCcpveF8qopVrNlHB0xQyjmXh2hyC8nNfKF9W0yhBzu44IvQFWMYIIbWzSG6T-dn-aF3VvfFWLu4cD4VXYjFdOWHVxicLa5d6MNsdYz2Ot0nONnUI_Ryf_d8My6fJg-PN1dPpeasGUpqgBljBaNVq6URVnPJtQRTy0ZSiS1vjRSs4ZQSAjarQNamsaISXW0EZkfocs1dLM0cWgt-iLpXi-jmOq5U0E797Xj3qmbhQ-XsREMEyYTzDSGG9yWkQc1dstD32kNYJkUbIqmoBZdZStZSG0NKEbrtHIK_gURtl6E2y8ies98f3Dp-os-Cci3IXvUWltHnvP4BfgGYyphe</recordid><startdate>20230616</startdate><enddate>20230616</enddate><creator>Smith, Abigail J.</creator><creator>Naudin, Elise A.</creator><creator>Edgell, Caitlin L.</creator><creator>Baker, Emily G.</creator><creator>Mylemans, Bram</creator><creator>FitzPatrick, Laura</creator><creator>Herman, Andrew</creator><creator>Rice, Helen M.</creator><creator>Andrews, David M.</creator><creator>Tigue, Natalie</creator><creator>Woolfson, Derek N.</creator><creator>Savery, Nigel J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9916-0255</orcidid><orcidid>https://orcid.org/0000-0002-1593-5525</orcidid><orcidid>https://orcid.org/0000-0002-0394-3202</orcidid><orcidid>https://orcid.org/0000-0002-1318-3366</orcidid><orcidid>https://orcid.org/0000-0002-4879-612X</orcidid><orcidid>https://orcid.org/0000-0002-0803-4075</orcidid></search><sort><creationdate>20230616</creationdate><title>Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology</title><author>Smith, Abigail J. ; Naudin, Elise A. ; Edgell, Caitlin L. ; Baker, Emily G. ; Mylemans, Bram ; FitzPatrick, Laura ; Herman, Andrew ; Rice, Helen M. ; Andrews, David M. ; Tigue, Natalie ; Woolfson, Derek N. ; Savery, Nigel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-2be3bbc7325da9b7ca494a9eb6989290c4db973842211ec25de96b8c757f6b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Abigail J.</creatorcontrib><creatorcontrib>Naudin, Elise A.</creatorcontrib><creatorcontrib>Edgell, Caitlin L.</creatorcontrib><creatorcontrib>Baker, Emily G.</creatorcontrib><creatorcontrib>Mylemans, Bram</creatorcontrib><creatorcontrib>FitzPatrick, Laura</creatorcontrib><creatorcontrib>Herman, Andrew</creatorcontrib><creatorcontrib>Rice, Helen M.</creatorcontrib><creatorcontrib>Andrews, David M.</creatorcontrib><creatorcontrib>Tigue, Natalie</creatorcontrib><creatorcontrib>Woolfson, Derek N.</creatorcontrib><creatorcontrib>Savery, Nigel J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Abigail J.</au><au>Naudin, Elise A.</au><au>Edgell, Caitlin L.</au><au>Baker, Emily G.</au><au>Mylemans, Bram</au><au>FitzPatrick, Laura</au><au>Herman, Andrew</au><au>Rice, Helen M.</au><au>Andrews, David M.</au><au>Tigue, Natalie</au><au>Woolfson, Derek N.</au><au>Savery, Nigel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2023-06-16</date><risdate>2023</risdate><volume>12</volume><issue>6</issue><spage>1845</spage><epage>1858</epage><pages>1845-1858</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide–protein or protein–protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37224449</pmid><doi>10.1021/acssynbio.3c00231</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9916-0255</orcidid><orcidid>https://orcid.org/0000-0002-1593-5525</orcidid><orcidid>https://orcid.org/0000-0002-0394-3202</orcidid><orcidid>https://orcid.org/0000-0002-1318-3366</orcidid><orcidid>https://orcid.org/0000-0002-4879-612X</orcidid><orcidid>https://orcid.org/0000-0002-0803-4075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2023-06, Vol.12 (6), p.1845-1858 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10278171 |
source | American Chemical Society Journals |
title | Design and Selection of Heterodimerizing Helical Hairpins for Synthetic Biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Selection%20of%20Heterodimerizing%20Helical%20Hairpins%20for%20Synthetic%20Biology&rft.jtitle=ACS%20synthetic%20biology&rft.au=Smith,%20Abigail%20J.&rft.date=2023-06-16&rft.volume=12&rft.issue=6&rft.spage=1845&rft.epage=1858&rft.pages=1845-1858&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.3c00231&rft_dat=%3Cproquest_pubme%3E2819276749%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819276749&rft_id=info:pmid/37224449&rfr_iscdi=true |