Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism

Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-09, Vol.16 (9), p.13845-13859
Hauptverfasser: Mohajerani, Farzaneh, Tyukodi, Botond, Schlicksup, Christopher J., Hadden-Perilla, Jodi A., Zlotnick, Adam, Hagan, Michael F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13859
container_issue 9
container_start_page 13845
container_title ACS nano
container_volume 16
creator Mohajerani, Farzaneh
Tyukodi, Botond
Schlicksup, Christopher J.
Hadden-Perilla, Jodi A.
Zlotnick, Adam
Hagan, Michael F.
description Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.
doi_str_mv 10.1021/acsnano.2c02119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709737337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMouq6evUmOgqxOmrbZnETXjxUVLyreQjadrlnapiat4H9vZNdFD0JgEt6bX4Y3hBwwOGGQsFNtQqMbd5KY-GJygwyY5PkIxvnr5vqesR2yG8ICIBNjkW-THZ5DlkoGA3L30FedDUZXSB9cgZVt5tSVdIqt7mxU6AV9sb4PdKLbYAt6HgLWs-qT6qagt12gl7Z2vn2zod4jW6WuAu6v6pA8X189Taaj-8eb28n5_UinHLpRilxowbNiBpggcGZkrnmWQAEJoMlLLRKRlXwsYcalgQxlbphJ01QgixofkrMlt-1nNRYGm87rSrXe1tp_Kqet-qs09k3N3YeKkQmeZDISjlYE7957DJ2qYwZYVbpB1weVCJCCCx7PkJwurca7EDyW638YfAOZWu1ArXYQOw5_j7f2_4QeDcdLQ-xUC9f7Jqb1L-4LP2GScA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709737337</pqid></control><display><type>article</type><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</creator><creatorcontrib>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</creatorcontrib><description>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02119</identifier><identifier>PMID: 36054910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - pharmacology ; Capsid - chemistry ; Capsid Proteins - chemistry ; Hepatitis B virus - chemistry ; Sex Characteristics ; Virus Assembly</subject><ispartof>ACS nano, 2022-09, Vol.16 (9), p.13845-13859</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</citedby><cites>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</cites><orcidid>0000-0001-6868-1234 ; 0000-0002-9211-2434 ; 0000-0003-4685-8291 ; 0000-0002-9340-3305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c02119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c02119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36054910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohajerani, Farzaneh</creatorcontrib><creatorcontrib>Tyukodi, Botond</creatorcontrib><creatorcontrib>Schlicksup, Christopher J.</creatorcontrib><creatorcontrib>Hadden-Perilla, Jodi A.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</description><subject>Antiviral Agents - pharmacology</subject><subject>Capsid - chemistry</subject><subject>Capsid Proteins - chemistry</subject><subject>Hepatitis B virus - chemistry</subject><subject>Sex Characteristics</subject><subject>Virus Assembly</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1LxDAQxYMouq6evUmOgqxOmrbZnETXjxUVLyreQjadrlnapiat4H9vZNdFD0JgEt6bX4Y3hBwwOGGQsFNtQqMbd5KY-GJygwyY5PkIxvnr5vqesR2yG8ICIBNjkW-THZ5DlkoGA3L30FedDUZXSB9cgZVt5tSVdIqt7mxU6AV9sb4PdKLbYAt6HgLWs-qT6qagt12gl7Z2vn2zod4jW6WuAu6v6pA8X189Taaj-8eb28n5_UinHLpRilxowbNiBpggcGZkrnmWQAEJoMlLLRKRlXwsYcalgQxlbphJ01QgixofkrMlt-1nNRYGm87rSrXe1tp_Kqet-qs09k3N3YeKkQmeZDISjlYE7957DJ2qYwZYVbpB1weVCJCCCx7PkJwurca7EDyW638YfAOZWu1ArXYQOw5_j7f2_4QeDcdLQ-xUC9f7Jqb1L-4LP2GScA</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Mohajerani, Farzaneh</creator><creator>Tyukodi, Botond</creator><creator>Schlicksup, Christopher J.</creator><creator>Hadden-Perilla, Jodi A.</creator><creator>Zlotnick, Adam</creator><creator>Hagan, Michael F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6868-1234</orcidid><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0003-4685-8291</orcidid><orcidid>https://orcid.org/0000-0002-9340-3305</orcidid></search><sort><creationdate>20220927</creationdate><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><author>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Capsid - chemistry</topic><topic>Capsid Proteins - chemistry</topic><topic>Hepatitis B virus - chemistry</topic><topic>Sex Characteristics</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohajerani, Farzaneh</creatorcontrib><creatorcontrib>Tyukodi, Botond</creatorcontrib><creatorcontrib>Schlicksup, Christopher J.</creatorcontrib><creatorcontrib>Hadden-Perilla, Jodi A.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohajerani, Farzaneh</au><au>Tyukodi, Botond</au><au>Schlicksup, Christopher J.</au><au>Hadden-Perilla, Jodi A.</au><au>Zlotnick, Adam</au><au>Hagan, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-09-27</date><risdate>2022</risdate><volume>16</volume><issue>9</issue><spage>13845</spage><epage>13859</epage><pages>13845-13859</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36054910</pmid><doi>10.1021/acsnano.2c02119</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6868-1234</orcidid><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0003-4685-8291</orcidid><orcidid>https://orcid.org/0000-0002-9340-3305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-09, Vol.16 (9), p.13845-13859
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273259
source MEDLINE; ACS Publications
subjects Antiviral Agents - pharmacology
Capsid - chemistry
Capsid Proteins - chemistry
Hepatitis B virus - chemistry
Sex Characteristics
Virus Assembly
title Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Modeling%20of%20Hepatitis%20B%20Virus%20Capsid%20Assembly%20and%20Its%20Dimorphism&rft.jtitle=ACS%20nano&rft.au=Mohajerani,%20Farzaneh&rft.date=2022-09-27&rft.volume=16&rft.issue=9&rft.spage=13845&rft.epage=13859&rft.pages=13845-13859&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02119&rft_dat=%3Cproquest_pubme%3E2709737337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709737337&rft_id=info:pmid/36054910&rfr_iscdi=true