Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism
Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsid...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-09, Vol.16 (9), p.13845-13859 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13859 |
---|---|
container_issue | 9 |
container_start_page | 13845 |
container_title | ACS nano |
container_volume | 16 |
creator | Mohajerani, Farzaneh Tyukodi, Botond Schlicksup, Christopher J. Hadden-Perilla, Jodi A. Zlotnick, Adam Hagan, Michael F. |
description | Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities. |
doi_str_mv | 10.1021/acsnano.2c02119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709737337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMouq6evUmOgqxOmrbZnETXjxUVLyreQjadrlnapiat4H9vZNdFD0JgEt6bX4Y3hBwwOGGQsFNtQqMbd5KY-GJygwyY5PkIxvnr5vqesR2yG8ICIBNjkW-THZ5DlkoGA3L30FedDUZXSB9cgZVt5tSVdIqt7mxU6AV9sb4PdKLbYAt6HgLWs-qT6qagt12gl7Z2vn2zod4jW6WuAu6v6pA8X189Taaj-8eb28n5_UinHLpRilxowbNiBpggcGZkrnmWQAEJoMlLLRKRlXwsYcalgQxlbphJ01QgixofkrMlt-1nNRYGm87rSrXe1tp_Kqet-qs09k3N3YeKkQmeZDISjlYE7957DJ2qYwZYVbpB1weVCJCCCx7PkJwurca7EDyW638YfAOZWu1ArXYQOw5_j7f2_4QeDcdLQ-xUC9f7Jqb1L-4LP2GScA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709737337</pqid></control><display><type>article</type><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</creator><creatorcontrib>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</creatorcontrib><description>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02119</identifier><identifier>PMID: 36054910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antiviral Agents - pharmacology ; Capsid - chemistry ; Capsid Proteins - chemistry ; Hepatitis B virus - chemistry ; Sex Characteristics ; Virus Assembly</subject><ispartof>ACS nano, 2022-09, Vol.16 (9), p.13845-13859</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</citedby><cites>FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</cites><orcidid>0000-0001-6868-1234 ; 0000-0002-9211-2434 ; 0000-0003-4685-8291 ; 0000-0002-9340-3305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c02119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c02119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36054910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohajerani, Farzaneh</creatorcontrib><creatorcontrib>Tyukodi, Botond</creatorcontrib><creatorcontrib>Schlicksup, Christopher J.</creatorcontrib><creatorcontrib>Hadden-Perilla, Jodi A.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</description><subject>Antiviral Agents - pharmacology</subject><subject>Capsid - chemistry</subject><subject>Capsid Proteins - chemistry</subject><subject>Hepatitis B virus - chemistry</subject><subject>Sex Characteristics</subject><subject>Virus Assembly</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1LxDAQxYMouq6evUmOgqxOmrbZnETXjxUVLyreQjadrlnapiat4H9vZNdFD0JgEt6bX4Y3hBwwOGGQsFNtQqMbd5KY-GJygwyY5PkIxvnr5vqesR2yG8ICIBNjkW-THZ5DlkoGA3L30FedDUZXSB9cgZVt5tSVdIqt7mxU6AV9sb4PdKLbYAt6HgLWs-qT6qagt12gl7Z2vn2zod4jW6WuAu6v6pA8X189Taaj-8eb28n5_UinHLpRilxowbNiBpggcGZkrnmWQAEJoMlLLRKRlXwsYcalgQxlbphJ01QgixofkrMlt-1nNRYGm87rSrXe1tp_Kqet-qs09k3N3YeKkQmeZDISjlYE7957DJ2qYwZYVbpB1weVCJCCCx7PkJwurca7EDyW638YfAOZWu1ArXYQOw5_j7f2_4QeDcdLQ-xUC9f7Jqb1L-4LP2GScA</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Mohajerani, Farzaneh</creator><creator>Tyukodi, Botond</creator><creator>Schlicksup, Christopher J.</creator><creator>Hadden-Perilla, Jodi A.</creator><creator>Zlotnick, Adam</creator><creator>Hagan, Michael F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6868-1234</orcidid><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0003-4685-8291</orcidid><orcidid>https://orcid.org/0000-0002-9340-3305</orcidid></search><sort><creationdate>20220927</creationdate><title>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</title><author>Mohajerani, Farzaneh ; Tyukodi, Botond ; Schlicksup, Christopher J. ; Hadden-Perilla, Jodi A. ; Zlotnick, Adam ; Hagan, Michael F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-4e37a735db0e2e031c96a3520d020ec6fa7275f3890b39c05e96c1c4447e1a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiviral Agents - pharmacology</topic><topic>Capsid - chemistry</topic><topic>Capsid Proteins - chemistry</topic><topic>Hepatitis B virus - chemistry</topic><topic>Sex Characteristics</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohajerani, Farzaneh</creatorcontrib><creatorcontrib>Tyukodi, Botond</creatorcontrib><creatorcontrib>Schlicksup, Christopher J.</creatorcontrib><creatorcontrib>Hadden-Perilla, Jodi A.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohajerani, Farzaneh</au><au>Tyukodi, Botond</au><au>Schlicksup, Christopher J.</au><au>Hadden-Perilla, Jodi A.</au><au>Zlotnick, Adam</au><au>Hagan, Michael F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-09-27</date><risdate>2022</risdate><volume>16</volume><issue>9</issue><spage>13845</spage><epage>13859</epage><pages>13845-13859</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hepatitis B virus (HBV) is an endemic, chronic virus that leads to 800000 deaths per year. Central to the HBV lifecycle, the viral core has a protein capsid assembled from many copies of a single protein. The capsid protein adopts different (quasi-equivalent) conformations to form icosahedral capsids containing 180 or 240 proteins: T = 3 or T = 4, respectively, in Caspar–Klug nomenclature. HBV capsid assembly has become an important target for recently developed antivirals; nonetheless, the assembly pathways and mechanisms that control HBV dimorphism remain unclear. We describe computer simulations of the HBV assembly, using a coarse-grained model that has parameters learned from all-atom molecular dynamics simulations of a complete HBV capsid and yet is computationally tractable. Dynamical simulations with the resulting model reproduce experimental observations of HBV assembly pathways and products. By constructing Markov state models and employing transition path theory, we identify pathways leading to T = 3, T = 4, and other experimentally observed capsid morphologies. The analysis shows that capsid polymorphism is promoted by the low HBV capsid bending modulus, where the key factors controlling polymorphism are the conformational energy landscape and protein–protein binding affinities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36054910</pmid><doi>10.1021/acsnano.2c02119</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6868-1234</orcidid><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0003-4685-8291</orcidid><orcidid>https://orcid.org/0000-0002-9340-3305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-09, Vol.16 (9), p.13845-13859 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273259 |
source | MEDLINE; ACS Publications |
subjects | Antiviral Agents - pharmacology Capsid - chemistry Capsid Proteins - chemistry Hepatitis B virus - chemistry Sex Characteristics Virus Assembly |
title | Multiscale Modeling of Hepatitis B Virus Capsid Assembly and Its Dimorphism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Modeling%20of%20Hepatitis%20B%20Virus%20Capsid%20Assembly%20and%20Its%20Dimorphism&rft.jtitle=ACS%20nano&rft.au=Mohajerani,%20Farzaneh&rft.date=2022-09-27&rft.volume=16&rft.issue=9&rft.spage=13845&rft.epage=13859&rft.pages=13845-13859&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02119&rft_dat=%3Cproquest_pubme%3E2709737337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709737337&rft_id=info:pmid/36054910&rfr_iscdi=true |