Customized Scaffolds for Direct Assembly of Functionalized DNA Origami

Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-06, Vol.15 (23), p.27759-27773
Hauptverfasser: Oktay, Esra, Bush, Joshua, Vargas, Merlyn, Scarton, Dylan Valerio, O’Shea, Bailey, Hartman, Amber, Green, Christopher M., Neyra, Kayla, Gomes, Carolina M., Medintz, Igor L., Mathur, Divita, Veneziano, Remi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27773
container_issue 23
container_start_page 27759
container_title ACS applied materials & interfaces
container_volume 15
creator Oktay, Esra
Bush, Joshua
Vargas, Merlyn
Scarton, Dylan Valerio
O’Shea, Bailey
Hartman, Amber
Green, Christopher M.
Neyra, Kayla
Gomes, Carolina M.
Medintz, Igor L.
Mathur, Divita
Veneziano, Remi
description Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.
doi_str_mv 10.1021/acsami.3c05690
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822379097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotla3LmWWIkzNa14rKa1VodiFug6ZPGrKzKQmM0L99UanFl24yoWce-7HB8A5gmMEMbrmwvPajImASVrAAzBEBaVxjhN8uJ8pHYAT79cQpgTD5BgMSIbTLMV0CObTzre2Nh9KRk-Ca20r6SNtXTQzTok2mniv6rLaRlZH864RrbENr7752eMkWjqzCgFOwZHmlVdnu3cEXua3z9P7eLG8e5hOFjGnOG3jrIBUJomQUFIsIc1JnqKyzDXWpCyTXOg0gYlQFBIlM8RhiImF5lmucAFlSUbgpvduurJWUqimdbxiG2dq7rbMcsP-_jTmla3sOwtlZQRlaTBc7gzOvnXKt6w2Xqiq4o2ynWc4x5iEnEUW0HGPCme9d0rv7yD4JUSsb5_t2g8LF7_T7fGfugNw1QNhka1t50KV_j_bJ5v_j_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822379097</pqid></control><display><type>article</type><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</creator><creatorcontrib>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</creatorcontrib><description>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05690</identifier><identifier>PMID: 37267624</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces ; DNA - chemistry ; Nanoparticles ; Nanostructures - chemistry ; Nanotechnology - methods ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligonucleotides</subject><ispartof>ACS applied materials &amp; interfaces, 2023-06, Vol.15 (23), p.27759-27773</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</citedby><cites>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</cites><orcidid>0000-0002-8902-4687 ; 0000-0002-2726-3770 ; 0000-0002-3537-7292 ; 0000-0001-7848-7144 ; 0000-0003-2554-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05690$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05690$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37267624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oktay, Esra</creatorcontrib><creatorcontrib>Bush, Joshua</creatorcontrib><creatorcontrib>Vargas, Merlyn</creatorcontrib><creatorcontrib>Scarton, Dylan Valerio</creatorcontrib><creatorcontrib>O’Shea, Bailey</creatorcontrib><creatorcontrib>Hartman, Amber</creatorcontrib><creatorcontrib>Green, Christopher M.</creatorcontrib><creatorcontrib>Neyra, Kayla</creatorcontrib><creatorcontrib>Gomes, Carolina M.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Veneziano, Remi</creatorcontrib><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>DNA - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotides</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotla3LmWWIkzNa14rKa1VodiFug6ZPGrKzKQmM0L99UanFl24yoWce-7HB8A5gmMEMbrmwvPajImASVrAAzBEBaVxjhN8uJ8pHYAT79cQpgTD5BgMSIbTLMV0CObTzre2Nh9KRk-Ca20r6SNtXTQzTok2mniv6rLaRlZH864RrbENr7752eMkWjqzCgFOwZHmlVdnu3cEXua3z9P7eLG8e5hOFjGnOG3jrIBUJomQUFIsIc1JnqKyzDXWpCyTXOg0gYlQFBIlM8RhiImF5lmucAFlSUbgpvduurJWUqimdbxiG2dq7rbMcsP-_jTmla3sOwtlZQRlaTBc7gzOvnXKt6w2Xqiq4o2ynWc4x5iEnEUW0HGPCme9d0rv7yD4JUSsb5_t2g8LF7_T7fGfugNw1QNhka1t50KV_j_bJ5v_j_k</recordid><startdate>20230614</startdate><enddate>20230614</enddate><creator>Oktay, Esra</creator><creator>Bush, Joshua</creator><creator>Vargas, Merlyn</creator><creator>Scarton, Dylan Valerio</creator><creator>O’Shea, Bailey</creator><creator>Hartman, Amber</creator><creator>Green, Christopher M.</creator><creator>Neyra, Kayla</creator><creator>Gomes, Carolina M.</creator><creator>Medintz, Igor L.</creator><creator>Mathur, Divita</creator><creator>Veneziano, Remi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-2726-3770</orcidid><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0001-7848-7144</orcidid><orcidid>https://orcid.org/0000-0003-2554-8075</orcidid></search><sort><creationdate>20230614</creationdate><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><author>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>DNA - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oktay, Esra</creatorcontrib><creatorcontrib>Bush, Joshua</creatorcontrib><creatorcontrib>Vargas, Merlyn</creatorcontrib><creatorcontrib>Scarton, Dylan Valerio</creatorcontrib><creatorcontrib>O’Shea, Bailey</creatorcontrib><creatorcontrib>Hartman, Amber</creatorcontrib><creatorcontrib>Green, Christopher M.</creatorcontrib><creatorcontrib>Neyra, Kayla</creatorcontrib><creatorcontrib>Gomes, Carolina M.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Veneziano, Remi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oktay, Esra</au><au>Bush, Joshua</au><au>Vargas, Merlyn</au><au>Scarton, Dylan Valerio</au><au>O’Shea, Bailey</au><au>Hartman, Amber</au><au>Green, Christopher M.</au><au>Neyra, Kayla</au><au>Gomes, Carolina M.</au><au>Medintz, Igor L.</au><au>Mathur, Divita</au><au>Veneziano, Remi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-14</date><risdate>2023</risdate><volume>15</volume><issue>23</issue><spage>27759</spage><epage>27773</epage><pages>27759-27773</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37267624</pmid><doi>10.1021/acsami.3c05690</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-2726-3770</orcidid><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0001-7848-7144</orcidid><orcidid>https://orcid.org/0000-0003-2554-8075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-06, Vol.15 (23), p.27759-27773
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273176
source ACS Publications; MEDLINE
subjects Biological and Medical Applications of Materials and Interfaces
DNA - chemistry
Nanoparticles
Nanostructures - chemistry
Nanotechnology - methods
Nucleic Acid Conformation
Nucleic Acid Hybridization
Oligonucleotides
title Customized Scaffolds for Direct Assembly of Functionalized DNA Origami
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customized%20Scaffolds%20for%20Direct%20Assembly%20of%20Functionalized%20DNA%20Origami&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Oktay,%20Esra&rft.date=2023-06-14&rft.volume=15&rft.issue=23&rft.spage=27759&rft.epage=27773&rft.pages=27759-27773&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05690&rft_dat=%3Cproquest_pubme%3E2822379097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822379097&rft_id=info:pmid/37267624&rfr_iscdi=true