Customized Scaffolds for Direct Assembly of Functionalized DNA Origami
Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. M...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-06, Vol.15 (23), p.27759-27773 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27773 |
---|---|
container_issue | 23 |
container_start_page | 27759 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Oktay, Esra Bush, Joshua Vargas, Merlyn Scarton, Dylan Valerio O’Shea, Bailey Hartman, Amber Green, Christopher M. Neyra, Kayla Gomes, Carolina M. Medintz, Igor L. Mathur, Divita Veneziano, Remi |
description | Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets. |
doi_str_mv | 10.1021/acsami.3c05690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822379097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotla3LmWWIkzNa14rKa1VodiFug6ZPGrKzKQmM0L99UanFl24yoWce-7HB8A5gmMEMbrmwvPajImASVrAAzBEBaVxjhN8uJ8pHYAT79cQpgTD5BgMSIbTLMV0CObTzre2Nh9KRk-Ca20r6SNtXTQzTok2mniv6rLaRlZH864RrbENr7752eMkWjqzCgFOwZHmlVdnu3cEXua3z9P7eLG8e5hOFjGnOG3jrIBUJomQUFIsIc1JnqKyzDXWpCyTXOg0gYlQFBIlM8RhiImF5lmucAFlSUbgpvduurJWUqimdbxiG2dq7rbMcsP-_jTmla3sOwtlZQRlaTBc7gzOvnXKt6w2Xqiq4o2ynWc4x5iEnEUW0HGPCme9d0rv7yD4JUSsb5_t2g8LF7_T7fGfugNw1QNhka1t50KV_j_bJ5v_j_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822379097</pqid></control><display><type>article</type><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</creator><creatorcontrib>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</creatorcontrib><description>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05690</identifier><identifier>PMID: 37267624</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces ; DNA - chemistry ; Nanoparticles ; Nanostructures - chemistry ; Nanotechnology - methods ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligonucleotides</subject><ispartof>ACS applied materials & interfaces, 2023-06, Vol.15 (23), p.27759-27773</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</citedby><cites>FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</cites><orcidid>0000-0002-8902-4687 ; 0000-0002-2726-3770 ; 0000-0002-3537-7292 ; 0000-0001-7848-7144 ; 0000-0003-2554-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05690$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05690$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37267624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oktay, Esra</creatorcontrib><creatorcontrib>Bush, Joshua</creatorcontrib><creatorcontrib>Vargas, Merlyn</creatorcontrib><creatorcontrib>Scarton, Dylan Valerio</creatorcontrib><creatorcontrib>O’Shea, Bailey</creatorcontrib><creatorcontrib>Hartman, Amber</creatorcontrib><creatorcontrib>Green, Christopher M.</creatorcontrib><creatorcontrib>Neyra, Kayla</creatorcontrib><creatorcontrib>Gomes, Carolina M.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Veneziano, Remi</creatorcontrib><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>DNA - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotides</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotla3LmWWIkzNa14rKa1VodiFug6ZPGrKzKQmM0L99UanFl24yoWce-7HB8A5gmMEMbrmwvPajImASVrAAzBEBaVxjhN8uJ8pHYAT79cQpgTD5BgMSIbTLMV0CObTzre2Nh9KRk-Ca20r6SNtXTQzTok2mniv6rLaRlZH864RrbENr7752eMkWjqzCgFOwZHmlVdnu3cEXua3z9P7eLG8e5hOFjGnOG3jrIBUJomQUFIsIc1JnqKyzDXWpCyTXOg0gYlQFBIlM8RhiImF5lmucAFlSUbgpvduurJWUqimdbxiG2dq7rbMcsP-_jTmla3sOwtlZQRlaTBc7gzOvnXKt6w2Xqiq4o2ynWc4x5iEnEUW0HGPCme9d0rv7yD4JUSsb5_t2g8LF7_T7fGfugNw1QNhka1t50KV_j_bJ5v_j_k</recordid><startdate>20230614</startdate><enddate>20230614</enddate><creator>Oktay, Esra</creator><creator>Bush, Joshua</creator><creator>Vargas, Merlyn</creator><creator>Scarton, Dylan Valerio</creator><creator>O’Shea, Bailey</creator><creator>Hartman, Amber</creator><creator>Green, Christopher M.</creator><creator>Neyra, Kayla</creator><creator>Gomes, Carolina M.</creator><creator>Medintz, Igor L.</creator><creator>Mathur, Divita</creator><creator>Veneziano, Remi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-2726-3770</orcidid><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0001-7848-7144</orcidid><orcidid>https://orcid.org/0000-0003-2554-8075</orcidid></search><sort><creationdate>20230614</creationdate><title>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</title><author>Oktay, Esra ; Bush, Joshua ; Vargas, Merlyn ; Scarton, Dylan Valerio ; O’Shea, Bailey ; Hartman, Amber ; Green, Christopher M. ; Neyra, Kayla ; Gomes, Carolina M. ; Medintz, Igor L. ; Mathur, Divita ; Veneziano, Remi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-7904d55cd0d42d0483861bb8f2f3bb58cf6505ce403ed71a02672cfa78e290db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>DNA - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oktay, Esra</creatorcontrib><creatorcontrib>Bush, Joshua</creatorcontrib><creatorcontrib>Vargas, Merlyn</creatorcontrib><creatorcontrib>Scarton, Dylan Valerio</creatorcontrib><creatorcontrib>O’Shea, Bailey</creatorcontrib><creatorcontrib>Hartman, Amber</creatorcontrib><creatorcontrib>Green, Christopher M.</creatorcontrib><creatorcontrib>Neyra, Kayla</creatorcontrib><creatorcontrib>Gomes, Carolina M.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Mathur, Divita</creatorcontrib><creatorcontrib>Veneziano, Remi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oktay, Esra</au><au>Bush, Joshua</au><au>Vargas, Merlyn</au><au>Scarton, Dylan Valerio</au><au>O’Shea, Bailey</au><au>Hartman, Amber</au><au>Green, Christopher M.</au><au>Neyra, Kayla</au><au>Gomes, Carolina M.</au><au>Medintz, Igor L.</au><au>Mathur, Divita</au><au>Veneziano, Remi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customized Scaffolds for Direct Assembly of Functionalized DNA Origami</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-14</date><risdate>2023</risdate><volume>15</volume><issue>23</issue><spage>27759</spage><epage>27773</epage><pages>27759-27773</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37267624</pmid><doi>10.1021/acsami.3c05690</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8902-4687</orcidid><orcidid>https://orcid.org/0000-0002-2726-3770</orcidid><orcidid>https://orcid.org/0000-0002-3537-7292</orcidid><orcidid>https://orcid.org/0000-0001-7848-7144</orcidid><orcidid>https://orcid.org/0000-0003-2554-8075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-06, Vol.15 (23), p.27759-27773 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273176 |
source | ACS Publications; MEDLINE |
subjects | Biological and Medical Applications of Materials and Interfaces DNA - chemistry Nanoparticles Nanostructures - chemistry Nanotechnology - methods Nucleic Acid Conformation Nucleic Acid Hybridization Oligonucleotides |
title | Customized Scaffolds for Direct Assembly of Functionalized DNA Origami |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customized%20Scaffolds%20for%20Direct%20Assembly%20of%20Functionalized%20DNA%20Origami&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Oktay,%20Esra&rft.date=2023-06-14&rft.volume=15&rft.issue=23&rft.spage=27759&rft.epage=27773&rft.pages=27759-27773&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05690&rft_dat=%3Cproquest_pubme%3E2822379097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822379097&rft_id=info:pmid/37267624&rfr_iscdi=true |