Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing
Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate h...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory and critical care medicine 2023-06, Vol.207 (12), p.1550-1551 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1551 |
---|---|
container_issue | 12 |
container_start_page | 1550 |
container_title | American journal of respiratory and critical care medicine |
container_volume | 207 |
creator | Mosier, Jarrod M |
description | Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes. |
doi_str_mv | 10.1164/rccm.202303-0521ED |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791377803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMotla_gA8S8EEfnJo_k8mkL1LWVQsrBWmpb-Fu5k43ZSZTk8yCgt_dLNsW9Sk33N85yeEQ8pKzY86b-n10bjwWTEgmK6YEX358RA65kqqqjWaPy8y0rOrafD8gz1K6YYyLlrOn5EA2RolGmUPy-yx0fuu7GQb_Czt6ERHyiCHTZd-jy-mEfgW38QHpCiEGH67pAgL9httpmLOfQpHR83XCuIXdNb2j6zkXOL9J9DJ0GFOG0NGrDWR6hfQ03uPF6jl50sOQ8MXdeUQuPy0vFl-q1fnns8XpqnKSi1yhAQGs06YRXQ2mcbVr214KcMopxVltgDXOKFMzznXbcKeBtWB64ep2jb08Ih_2vrfzesTOlXwRBnsb_Qjxp53A2383wW_s9bS1nAktywPF4e2dQ5x-zJiyHX1yOAwQcJqTFdpwqXXLZEFf_4feTHMMJZ8VrdDFURlTKLGnXJxSitg__IYzu6vX7uq1-3rtvt4ievV3jgfJfZ_yD1lsow4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827027599</pqid></control><display><type>article</type><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><source>MEDLINE</source><source>American Thoracic Society (ATS) Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mosier, Jarrod M</creator><creatorcontrib>Mosier, Jarrod M</creatorcontrib><description>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>DOI: 10.1164/rccm.202303-0521ED</identifier><identifier>PMID: 36952659</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Algorithms ; Artificial intelligence ; Calibration ; Clinical trials ; Critical care ; Critical Illness ; Humans ; Intubation, Intratracheal ; Machine Learning</subject><ispartof>American journal of respiratory and critical care medicine, 2023-06, Vol.207 (12), p.1550-1551</ispartof><rights>Copyright American Thoracic Society Jun 15, 2023</rights><rights>Copyright © 2023 by the American Thoracic Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</cites><orcidid>0000-0002-5371-0845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4011,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36952659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosier, Jarrod M</creatorcontrib><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Calibration</subject><subject>Clinical trials</subject><subject>Critical care</subject><subject>Critical Illness</subject><subject>Humans</subject><subject>Intubation, Intratracheal</subject><subject>Machine Learning</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9rFDEUxYMotla_gA8S8EEfnJo_k8mkL1LWVQsrBWmpb-Fu5k43ZSZTk8yCgt_dLNsW9Sk33N85yeEQ8pKzY86b-n10bjwWTEgmK6YEX358RA65kqqqjWaPy8y0rOrafD8gz1K6YYyLlrOn5EA2RolGmUPy-yx0fuu7GQb_Czt6ERHyiCHTZd-jy-mEfgW38QHpCiEGH67pAgL9httpmLOfQpHR83XCuIXdNb2j6zkXOL9J9DJ0GFOG0NGrDWR6hfQ03uPF6jl50sOQ8MXdeUQuPy0vFl-q1fnns8XpqnKSi1yhAQGs06YRXQ2mcbVr214KcMopxVltgDXOKFMzznXbcKeBtWB64ep2jb08Ih_2vrfzesTOlXwRBnsb_Qjxp53A2383wW_s9bS1nAktywPF4e2dQ5x-zJiyHX1yOAwQcJqTFdpwqXXLZEFf_4feTHMMJZ8VrdDFURlTKLGnXJxSitg__IYzu6vX7uq1-3rtvt4ievV3jgfJfZ_yD1lsow4</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Mosier, Jarrod M</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5371-0845</orcidid></search><sort><creationdate>20230615</creationdate><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><author>Mosier, Jarrod M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Calibration</topic><topic>Clinical trials</topic><topic>Critical care</topic><topic>Critical Illness</topic><topic>Humans</topic><topic>Intubation, Intratracheal</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosier, Jarrod M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosier, Jarrod M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>207</volume><issue>12</issue><spage>1550</spage><epage>1551</epage><pages>1550-1551</pages><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>36952659</pmid><doi>10.1164/rccm.202303-0521ED</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-5371-0845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-449X |
ispartof | American journal of respiratory and critical care medicine, 2023-06, Vol.207 (12), p.1550-1551 |
issn | 1073-449X 1535-4970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273104 |
source | MEDLINE; American Thoracic Society (ATS) Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Calibration Clinical trials Critical care Critical Illness Humans Intubation, Intratracheal Machine Learning |
title | Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individualized%20Treatment%20Effects:%20Machine%20Learning%20Can%20Revolutionize%20Observations,%20but%20Let's%20Understand%20What%20We%20Are%20Observing&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Mosier,%20Jarrod%20M&rft.date=2023-06-15&rft.volume=207&rft.issue=12&rft.spage=1550&rft.epage=1551&rft.pages=1550-1551&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/rccm.202303-0521ED&rft_dat=%3Cproquest_pubme%3E2791377803%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827027599&rft_id=info:pmid/36952659&rfr_iscdi=true |