Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing

Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine 2023-06, Vol.207 (12), p.1550-1551
1. Verfasser: Mosier, Jarrod M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1551
container_issue 12
container_start_page 1550
container_title American journal of respiratory and critical care medicine
container_volume 207
creator Mosier, Jarrod M
description Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.
doi_str_mv 10.1164/rccm.202303-0521ED
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791377803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMotla_gA8S8EEfnJo_k8mkL1LWVQsrBWmpb-Fu5k43ZSZTk8yCgt_dLNsW9Sk33N85yeEQ8pKzY86b-n10bjwWTEgmK6YEX358RA65kqqqjWaPy8y0rOrafD8gz1K6YYyLlrOn5EA2RolGmUPy-yx0fuu7GQb_Czt6ERHyiCHTZd-jy-mEfgW38QHpCiEGH67pAgL9httpmLOfQpHR83XCuIXdNb2j6zkXOL9J9DJ0GFOG0NGrDWR6hfQ03uPF6jl50sOQ8MXdeUQuPy0vFl-q1fnns8XpqnKSi1yhAQGs06YRXQ2mcbVr214KcMopxVltgDXOKFMzznXbcKeBtWB64ep2jb08Ih_2vrfzesTOlXwRBnsb_Qjxp53A2383wW_s9bS1nAktywPF4e2dQ5x-zJiyHX1yOAwQcJqTFdpwqXXLZEFf_4feTHMMJZ8VrdDFURlTKLGnXJxSitg__IYzu6vX7uq1-3rtvt4ievV3jgfJfZ_yD1lsow4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827027599</pqid></control><display><type>article</type><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><source>MEDLINE</source><source>American Thoracic Society (ATS) Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mosier, Jarrod M</creator><creatorcontrib>Mosier, Jarrod M</creatorcontrib><description>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><identifier>DOI: 10.1164/rccm.202303-0521ED</identifier><identifier>PMID: 36952659</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Algorithms ; Artificial intelligence ; Calibration ; Clinical trials ; Critical care ; Critical Illness ; Humans ; Intubation, Intratracheal ; Machine Learning</subject><ispartof>American journal of respiratory and critical care medicine, 2023-06, Vol.207 (12), p.1550-1551</ispartof><rights>Copyright American Thoracic Society Jun 15, 2023</rights><rights>Copyright © 2023 by the American Thoracic Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</cites><orcidid>0000-0002-5371-0845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4011,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36952659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosier, Jarrod M</creatorcontrib><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><title>American journal of respiratory and critical care medicine</title><addtitle>Am J Respir Crit Care Med</addtitle><description>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Calibration</subject><subject>Clinical trials</subject><subject>Critical care</subject><subject>Critical Illness</subject><subject>Humans</subject><subject>Intubation, Intratracheal</subject><subject>Machine Learning</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9rFDEUxYMotla_gA8S8EEfnJo_k8mkL1LWVQsrBWmpb-Fu5k43ZSZTk8yCgt_dLNsW9Sk33N85yeEQ8pKzY86b-n10bjwWTEgmK6YEX358RA65kqqqjWaPy8y0rOrafD8gz1K6YYyLlrOn5EA2RolGmUPy-yx0fuu7GQb_Czt6ERHyiCHTZd-jy-mEfgW38QHpCiEGH67pAgL9httpmLOfQpHR83XCuIXdNb2j6zkXOL9J9DJ0GFOG0NGrDWR6hfQ03uPF6jl50sOQ8MXdeUQuPy0vFl-q1fnns8XpqnKSi1yhAQGs06YRXQ2mcbVr214KcMopxVltgDXOKFMzznXbcKeBtWB64ep2jb08Ih_2vrfzesTOlXwRBnsb_Qjxp53A2383wW_s9bS1nAktywPF4e2dQ5x-zJiyHX1yOAwQcJqTFdpwqXXLZEFf_4feTHMMJZ8VrdDFURlTKLGnXJxSitg__IYzu6vX7uq1-3rtvt4ievV3jgfJfZ_yD1lsow4</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Mosier, Jarrod M</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5371-0845</orcidid></search><sort><creationdate>20230615</creationdate><title>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</title><author>Mosier, Jarrod M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e9a2a0d7962d4a96c4c88f32ac5c551049a06c95940117861c7a08a9f2c48bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Calibration</topic><topic>Clinical trials</topic><topic>Critical care</topic><topic>Critical Illness</topic><topic>Humans</topic><topic>Intubation, Intratracheal</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosier, Jarrod M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosier, Jarrod M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><addtitle>Am J Respir Crit Care Med</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>207</volume><issue>12</issue><spage>1550</spage><epage>1551</epage><pages>1550-1551</pages><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>Mosier discusses the study by Seitz and colleagues which reimagine how we can use machine learning to evaluate the potential individualized treatment effects in critically ill patients. Clinical trial results present an average treatment effect across all participants and traditionally investigate heterogeneity by individually evaluating potential effect modifiers. Machine learning approaches provide a new way of evaluating relationships between variables and the magnitude of those relationships. Seitz and colleagues used a causal forest algorithm on prespecified predictor variables using the BOUGIE trial data as a demonstration of the potential for this machine learning approach. The causal forest algorithm used baseline patient and operator variables to find relationships between them using aggregated decision trees to predict individualized outcomes.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>36952659</pmid><doi>10.1164/rccm.202303-0521ED</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-5371-0845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-449X
ispartof American journal of respiratory and critical care medicine, 2023-06, Vol.207 (12), p.1550-1551
issn 1073-449X
1535-4970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10273104
source MEDLINE; American Thoracic Society (ATS) Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Calibration
Clinical trials
Critical care
Critical Illness
Humans
Intubation, Intratracheal
Machine Learning
title Individualized Treatment Effects: Machine Learning Can Revolutionize Observations, but Let's Understand What We Are Observing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individualized%20Treatment%20Effects:%20Machine%20Learning%20Can%20Revolutionize%20Observations,%20but%20Let's%20Understand%20What%20We%20Are%20Observing&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Mosier,%20Jarrod%20M&rft.date=2023-06-15&rft.volume=207&rft.issue=12&rft.spage=1550&rft.epage=1551&rft.pages=1550-1551&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/10.1164/rccm.202303-0521ED&rft_dat=%3Cproquest_pubme%3E2791377803%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827027599&rft_id=info:pmid/36952659&rfr_iscdi=true