A theory of physiological similarity in muscle-driven motion

Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-06, Vol.120 (24), p.e2221217120
1. Verfasser: Labonte, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page e2221217120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Labonte, David
description Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.
doi_str_mv 10.1073/pnas.2221217120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825875667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMo7vpx9iYFL166O5kkbQOCiPgFghc9hzRN3Sxtsybtwv73dvHb0zDMbx7v8Qg5oTCjkLP5qtNxhogUaU4RdsiUgqRpxiXskikA5mnBkU_IQYxLAJCigH0yYTkWgkkxJRdXSb-wPmwSXyerxSY63_hXZ3STRNe6RgfXbxLXJe0QTWPTKri1HTffO98dkb1aN9Eef85D8nJ783x9nz4-3T1cXz2mhiP2KbWlYCgqNKXMLAK1NuOcGmtFVWrOOdaM10JWZWVKKIQQRc7KXEiRaVPmyA7J5YfuaihbWxnb9UE3ahVcq8NGee3U30vnFurVrxUFzAqkdFQ4_1QI_m2wsVeti8Y2je6sH6LCApmUACwf0bN_6NIPoRvzbanRmsiyLTX_oEzwMQZbf7uhoLbVqG016qea8eP0d4hv_qsL9g6RaYql</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825875667</pqid></control><display><type>article</type><title>A theory of physiological similarity in muscle-driven motion</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Labonte, David</creator><creatorcontrib>Labonte, David</creatorcontrib><description>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2221217120</identifier><identifier>PMID: 37285395</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anatomy ; Animals ; Biological Sciences ; Biomechanical Phenomena ; Dimensionless numbers ; Locomotion - physiology ; Locomotor activity ; Mechanical properties ; Motion ; Movement ; Muscle contraction ; Muscle Contraction - physiology ; Muscle, Skeletal - physiology ; Muscles ; Muscular function ; Physical Sciences ; Physiology ; Strain rate</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (24), p.e2221217120</ispartof><rights>Copyright National Academy of Sciences Jun 13, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</citedby><cites>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</cites><orcidid>0000-0002-1952-8732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268211/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268211/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37285395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labonte, David</creatorcontrib><title>A theory of physiological similarity in muscle-driven motion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</description><subject>Anatomy</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Dimensionless numbers</subject><subject>Locomotion - physiology</subject><subject>Locomotor activity</subject><subject>Mechanical properties</subject><subject>Motion</subject><subject>Movement</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Strain rate</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMo7vpx9iYFL166O5kkbQOCiPgFghc9hzRN3Sxtsybtwv73dvHb0zDMbx7v8Qg5oTCjkLP5qtNxhogUaU4RdsiUgqRpxiXskikA5mnBkU_IQYxLAJCigH0yYTkWgkkxJRdXSb-wPmwSXyerxSY63_hXZ3STRNe6RgfXbxLXJe0QTWPTKri1HTffO98dkb1aN9Eef85D8nJ783x9nz4-3T1cXz2mhiP2KbWlYCgqNKXMLAK1NuOcGmtFVWrOOdaM10JWZWVKKIQQRc7KXEiRaVPmyA7J5YfuaihbWxnb9UE3ahVcq8NGee3U30vnFurVrxUFzAqkdFQ4_1QI_m2wsVeti8Y2je6sH6LCApmUACwf0bN_6NIPoRvzbanRmsiyLTX_oEzwMQZbf7uhoLbVqG016qea8eP0d4hv_qsL9g6RaYql</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Labonte, David</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1952-8732</orcidid></search><sort><creationdate>20230613</creationdate><title>A theory of physiological similarity in muscle-driven motion</title><author>Labonte, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatomy</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Dimensionless numbers</topic><topic>Locomotion - physiology</topic><topic>Locomotor activity</topic><topic>Mechanical properties</topic><topic>Motion</topic><topic>Movement</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labonte, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labonte, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of physiological similarity in muscle-driven motion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>120</volume><issue>24</issue><spage>e2221217120</spage><pages>e2221217120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37285395</pmid><doi>10.1073/pnas.2221217120</doi><orcidid>https://orcid.org/0000-0002-1952-8732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (24), p.e2221217120
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268211
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anatomy
Animals
Biological Sciences
Biomechanical Phenomena
Dimensionless numbers
Locomotion - physiology
Locomotor activity
Mechanical properties
Motion
Movement
Muscle contraction
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Muscles
Muscular function
Physical Sciences
Physiology
Strain rate
title A theory of physiological similarity in muscle-driven motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20physiological%20similarity%20in%20muscle-driven%20motion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Labonte,%20David&rft.date=2023-06-13&rft.volume=120&rft.issue=24&rft.spage=e2221217120&rft.pages=e2221217120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2221217120&rft_dat=%3Cproquest_pubme%3E2825875667%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825875667&rft_id=info:pmid/37285395&rfr_iscdi=true