A theory of physiological similarity in muscle-driven motion
Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," , defined by a small set of mechanical, physiological, and anatomical properties...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-06, Vol.120 (24), p.e2221217120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | e2221217120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Labonte, David |
description | Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia,"
, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal
may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to
close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs.
varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales. |
doi_str_mv | 10.1073/pnas.2221217120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825875667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMo7vpx9iYFL166O5kkbQOCiPgFghc9hzRN3Sxtsybtwv73dvHb0zDMbx7v8Qg5oTCjkLP5qtNxhogUaU4RdsiUgqRpxiXskikA5mnBkU_IQYxLAJCigH0yYTkWgkkxJRdXSb-wPmwSXyerxSY63_hXZ3STRNe6RgfXbxLXJe0QTWPTKri1HTffO98dkb1aN9Eef85D8nJ783x9nz4-3T1cXz2mhiP2KbWlYCgqNKXMLAK1NuOcGmtFVWrOOdaM10JWZWVKKIQQRc7KXEiRaVPmyA7J5YfuaihbWxnb9UE3ahVcq8NGee3U30vnFurVrxUFzAqkdFQ4_1QI_m2wsVeti8Y2je6sH6LCApmUACwf0bN_6NIPoRvzbanRmsiyLTX_oEzwMQZbf7uhoLbVqG016qea8eP0d4hv_qsL9g6RaYql</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825875667</pqid></control><display><type>article</type><title>A theory of physiological similarity in muscle-driven motion</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Labonte, David</creator><creatorcontrib>Labonte, David</creatorcontrib><description>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia,"
, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal
may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to
close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs.
varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2221217120</identifier><identifier>PMID: 37285395</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anatomy ; Animals ; Biological Sciences ; Biomechanical Phenomena ; Dimensionless numbers ; Locomotion - physiology ; Locomotor activity ; Mechanical properties ; Motion ; Movement ; Muscle contraction ; Muscle Contraction - physiology ; Muscle, Skeletal - physiology ; Muscles ; Muscular function ; Physical Sciences ; Physiology ; Strain rate</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (24), p.e2221217120</ispartof><rights>Copyright National Academy of Sciences Jun 13, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</citedby><cites>FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</cites><orcidid>0000-0002-1952-8732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268211/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268211/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37285395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labonte, David</creatorcontrib><title>A theory of physiological similarity in muscle-driven motion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia,"
, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal
may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to
close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs.
varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</description><subject>Anatomy</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Dimensionless numbers</subject><subject>Locomotion - physiology</subject><subject>Locomotor activity</subject><subject>Mechanical properties</subject><subject>Motion</subject><subject>Movement</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Strain rate</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMo7vpx9iYFL166O5kkbQOCiPgFghc9hzRN3Sxtsybtwv73dvHb0zDMbx7v8Qg5oTCjkLP5qtNxhogUaU4RdsiUgqRpxiXskikA5mnBkU_IQYxLAJCigH0yYTkWgkkxJRdXSb-wPmwSXyerxSY63_hXZ3STRNe6RgfXbxLXJe0QTWPTKri1HTffO98dkb1aN9Eef85D8nJ783x9nz4-3T1cXz2mhiP2KbWlYCgqNKXMLAK1NuOcGmtFVWrOOdaM10JWZWVKKIQQRc7KXEiRaVPmyA7J5YfuaihbWxnb9UE3ahVcq8NGee3U30vnFurVrxUFzAqkdFQ4_1QI_m2wsVeti8Y2je6sH6LCApmUACwf0bN_6NIPoRvzbanRmsiyLTX_oEzwMQZbf7uhoLbVqG016qea8eP0d4hv_qsL9g6RaYql</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Labonte, David</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1952-8732</orcidid></search><sort><creationdate>20230613</creationdate><title>A theory of physiological similarity in muscle-driven motion</title><author>Labonte, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-1eb5325d2cb96e201ee6441cee5dba4442f34f59dbdcb08555873b75956acb723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatomy</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Dimensionless numbers</topic><topic>Locomotion - physiology</topic><topic>Locomotor activity</topic><topic>Mechanical properties</topic><topic>Motion</topic><topic>Movement</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labonte, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labonte, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of physiological similarity in muscle-driven motion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>120</volume><issue>24</issue><spage>e2221217120</spage><pages>e2221217120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia,"
, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal
may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to
close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs.
varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37285395</pmid><doi>10.1073/pnas.2221217120</doi><orcidid>https://orcid.org/0000-0002-1952-8732</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (24), p.e2221217120 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10268211 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anatomy Animals Biological Sciences Biomechanical Phenomena Dimensionless numbers Locomotion - physiology Locomotor activity Mechanical properties Motion Movement Muscle contraction Muscle Contraction - physiology Muscle, Skeletal - physiology Muscles Muscular function Physical Sciences Physiology Strain rate |
title | A theory of physiological similarity in muscle-driven motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20physiological%20similarity%20in%20muscle-driven%20motion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Labonte,%20David&rft.date=2023-06-13&rft.volume=120&rft.issue=24&rft.spage=e2221217120&rft.pages=e2221217120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2221217120&rft_dat=%3Cproquest_pubme%3E2825875667%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825875667&rft_id=info:pmid/37285395&rfr_iscdi=true |