Generalizing deep learning brain segmentation for skull removal and intracranial measurements
Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2022-05, Vol.88, p.44-52 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 44 |
container_title | Magnetic resonance imaging |
container_volume | 88 |
creator | Liu, Yue Huo, Yuankai Dewey, Blake Wei, Ying Lyu, Ilwoo Landman, Bennett A. |
description | Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped). |
doi_str_mv | 10.1016/j.mri.2022.01.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10265747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X22000042</els_id><sourcerecordid>2618520100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</originalsourceid><addsrcrecordid>eNp9kcFrFDEYxYNY7Fr9A7zIHL3M-CWZmUzwIFK0CoVeFLxIyCTfrFkzyZrMLLR_vVm2Fr0UAiH53nt55EfIKwoNBdq_3TVzcg0DxhqgDUD7hGzoIHjdDbJ9SjYgONSCdd_PyfOcdwDQMd49I-e8lVLSnm3IjysMmLR3dy5sK4u4rzzqFI6nMWkXqozbGcOiFxdDNcVU5V-r91XCOR60r3SwlQtL0ibp4MrFjDqvZVo8-QU5m7TP-PJ-vyDfPn38evm5vr65-nL54bo2bceWehzaUTAry-KCD9aWbrzFiVIEa01vBZPMSD6ObMCJCyM6OQo5tHRCydqRX5D3p9z9Os5oDR4LebVPbtbpVkXt1P-T4H6qbTwoCqzvRCtKwpv7hBR_r5gXNbts0HsdMK5ZsZ4OHQMKUKT0JDUp5pxweniHgjpyUTtVuKgjFwVUFS7F8_rfgg-OvyCK4N1JgOWbDg6TysZhMGhdQrMoG90j8X8A49mg8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618520100</pqid></control><display><type>article</type><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</creator><creatorcontrib>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</creatorcontrib><description>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2022.01.004</identifier><identifier>PMID: 34999162</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Brain - diagnostic imaging ; Deep Learning ; Image Processing, Computer-Assisted - methods ; Intracranial measurements ; Magnetic Resonance Imaging - methods ; Neuroimaging - methods ; Skull - diagnostic imaging ; Skull-stripped brain ; U-net tiles ; Whole brain segmentation</subject><ispartof>Magnetic resonance imaging, 2022-05, Vol.88, p.44-52</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</citedby><cites>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X22000042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34999162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Dewey, Blake</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><creatorcontrib>Lyu, Ilwoo</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</description><subject>Brain - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Intracranial measurements</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neuroimaging - methods</subject><subject>Skull - diagnostic imaging</subject><subject>Skull-stripped brain</subject><subject>U-net tiles</subject><subject>Whole brain segmentation</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFrFDEYxYNY7Fr9A7zIHL3M-CWZmUzwIFK0CoVeFLxIyCTfrFkzyZrMLLR_vVm2Fr0UAiH53nt55EfIKwoNBdq_3TVzcg0DxhqgDUD7hGzoIHjdDbJ9SjYgONSCdd_PyfOcdwDQMd49I-e8lVLSnm3IjysMmLR3dy5sK4u4rzzqFI6nMWkXqozbGcOiFxdDNcVU5V-r91XCOR60r3SwlQtL0ibp4MrFjDqvZVo8-QU5m7TP-PJ-vyDfPn38evm5vr65-nL54bo2bceWehzaUTAry-KCD9aWbrzFiVIEa01vBZPMSD6ObMCJCyM6OQo5tHRCydqRX5D3p9z9Os5oDR4LebVPbtbpVkXt1P-T4H6qbTwoCqzvRCtKwpv7hBR_r5gXNbts0HsdMK5ZsZ4OHQMKUKT0JDUp5pxweniHgjpyUTtVuKgjFwVUFS7F8_rfgg-OvyCK4N1JgOWbDg6TysZhMGhdQrMoG90j8X8A49mg8Q</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Liu, Yue</creator><creator>Huo, Yuankai</creator><creator>Dewey, Blake</creator><creator>Wei, Ying</creator><creator>Lyu, Ilwoo</creator><creator>Landman, Bennett A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220501</creationdate><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><author>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Intracranial measurements</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neuroimaging - methods</topic><topic>Skull - diagnostic imaging</topic><topic>Skull-stripped brain</topic><topic>U-net tiles</topic><topic>Whole brain segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Dewey, Blake</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><creatorcontrib>Lyu, Ilwoo</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yue</au><au>Huo, Yuankai</au><au>Dewey, Blake</au><au>Wei, Ying</au><au>Lyu, Ilwoo</au><au>Landman, Bennett A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>88</volume><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>34999162</pmid><doi>10.1016/j.mri.2022.01.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2022-05, Vol.88, p.44-52 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10265747 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Brain - diagnostic imaging Deep Learning Image Processing, Computer-Assisted - methods Intracranial measurements Magnetic Resonance Imaging - methods Neuroimaging - methods Skull - diagnostic imaging Skull-stripped brain U-net tiles Whole brain segmentation |
title | Generalizing deep learning brain segmentation for skull removal and intracranial measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20deep%20learning%20brain%20segmentation%20for%20skull%20removal%20and%20intracranial%20measurements&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Liu,%20Yue&rft.date=2022-05-01&rft.volume=88&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2022.01.004&rft_dat=%3Cproquest_pubme%3E2618520100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618520100&rft_id=info:pmid/34999162&rft_els_id=S0730725X22000042&rfr_iscdi=true |