Generalizing deep learning brain segmentation for skull removal and intracranial measurements

Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2022-05, Vol.88, p.44-52
Hauptverfasser: Liu, Yue, Huo, Yuankai, Dewey, Blake, Wei, Ying, Lyu, Ilwoo, Landman, Bennett A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 44
container_title Magnetic resonance imaging
container_volume 88
creator Liu, Yue
Huo, Yuankai
Dewey, Blake
Wei, Ying
Lyu, Ilwoo
Landman, Bennett A.
description Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).
doi_str_mv 10.1016/j.mri.2022.01.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10265747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X22000042</els_id><sourcerecordid>2618520100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</originalsourceid><addsrcrecordid>eNp9kcFrFDEYxYNY7Fr9A7zIHL3M-CWZmUzwIFK0CoVeFLxIyCTfrFkzyZrMLLR_vVm2Fr0UAiH53nt55EfIKwoNBdq_3TVzcg0DxhqgDUD7hGzoIHjdDbJ9SjYgONSCdd_PyfOcdwDQMd49I-e8lVLSnm3IjysMmLR3dy5sK4u4rzzqFI6nMWkXqozbGcOiFxdDNcVU5V-r91XCOR60r3SwlQtL0ibp4MrFjDqvZVo8-QU5m7TP-PJ-vyDfPn38evm5vr65-nL54bo2bceWehzaUTAry-KCD9aWbrzFiVIEa01vBZPMSD6ObMCJCyM6OQo5tHRCydqRX5D3p9z9Os5oDR4LebVPbtbpVkXt1P-T4H6qbTwoCqzvRCtKwpv7hBR_r5gXNbts0HsdMK5ZsZ4OHQMKUKT0JDUp5pxweniHgjpyUTtVuKgjFwVUFS7F8_rfgg-OvyCK4N1JgOWbDg6TysZhMGhdQrMoG90j8X8A49mg8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618520100</pqid></control><display><type>article</type><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</creator><creatorcontrib>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</creatorcontrib><description>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2022.01.004</identifier><identifier>PMID: 34999162</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Brain - diagnostic imaging ; Deep Learning ; Image Processing, Computer-Assisted - methods ; Intracranial measurements ; Magnetic Resonance Imaging - methods ; Neuroimaging - methods ; Skull - diagnostic imaging ; Skull-stripped brain ; U-net tiles ; Whole brain segmentation</subject><ispartof>Magnetic resonance imaging, 2022-05, Vol.88, p.44-52</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</citedby><cites>FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X22000042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34999162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Dewey, Blake</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><creatorcontrib>Lyu, Ilwoo</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</description><subject>Brain - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Intracranial measurements</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neuroimaging - methods</subject><subject>Skull - diagnostic imaging</subject><subject>Skull-stripped brain</subject><subject>U-net tiles</subject><subject>Whole brain segmentation</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFrFDEYxYNY7Fr9A7zIHL3M-CWZmUzwIFK0CoVeFLxIyCTfrFkzyZrMLLR_vVm2Fr0UAiH53nt55EfIKwoNBdq_3TVzcg0DxhqgDUD7hGzoIHjdDbJ9SjYgONSCdd_PyfOcdwDQMd49I-e8lVLSnm3IjysMmLR3dy5sK4u4rzzqFI6nMWkXqozbGcOiFxdDNcVU5V-r91XCOR60r3SwlQtL0ibp4MrFjDqvZVo8-QU5m7TP-PJ-vyDfPn38evm5vr65-nL54bo2bceWehzaUTAry-KCD9aWbrzFiVIEa01vBZPMSD6ObMCJCyM6OQo5tHRCydqRX5D3p9z9Os5oDR4LebVPbtbpVkXt1P-T4H6qbTwoCqzvRCtKwpv7hBR_r5gXNbts0HsdMK5ZsZ4OHQMKUKT0JDUp5pxweniHgjpyUTtVuKgjFwVUFS7F8_rfgg-OvyCK4N1JgOWbDg6TysZhMGhdQrMoG90j8X8A49mg8Q</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Liu, Yue</creator><creator>Huo, Yuankai</creator><creator>Dewey, Blake</creator><creator>Wei, Ying</creator><creator>Lyu, Ilwoo</creator><creator>Landman, Bennett A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220501</creationdate><title>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</title><author>Liu, Yue ; Huo, Yuankai ; Dewey, Blake ; Wei, Ying ; Lyu, Ilwoo ; Landman, Bennett A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b84b72d92d93738dd91634ef11e0ddc6d7292c93bb28ef37c759b79841fe924b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Intracranial measurements</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neuroimaging - methods</topic><topic>Skull - diagnostic imaging</topic><topic>Skull-stripped brain</topic><topic>U-net tiles</topic><topic>Whole brain segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Huo, Yuankai</creatorcontrib><creatorcontrib>Dewey, Blake</creatorcontrib><creatorcontrib>Wei, Ying</creatorcontrib><creatorcontrib>Lyu, Ilwoo</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yue</au><au>Huo, Yuankai</au><au>Dewey, Blake</au><au>Wei, Ying</au><au>Lyu, Ilwoo</au><au>Landman, Bennett A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing deep learning brain segmentation for skull removal and intracranial measurements</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>88</volume><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>34999162</pmid><doi>10.1016/j.mri.2022.01.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2022-05, Vol.88, p.44-52
issn 0730-725X
1873-5894
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10265747
source MEDLINE; Elsevier ScienceDirect Journals
subjects Brain - diagnostic imaging
Deep Learning
Image Processing, Computer-Assisted - methods
Intracranial measurements
Magnetic Resonance Imaging - methods
Neuroimaging - methods
Skull - diagnostic imaging
Skull-stripped brain
U-net tiles
Whole brain segmentation
title Generalizing deep learning brain segmentation for skull removal and intracranial measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20deep%20learning%20brain%20segmentation%20for%20skull%20removal%20and%20intracranial%20measurements&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Liu,%20Yue&rft.date=2022-05-01&rft.volume=88&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2022.01.004&rft_dat=%3Cproquest_pubme%3E2618520100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618520100&rft_id=info:pmid/34999162&rft_els_id=S0730725X22000042&rfr_iscdi=true