RCytoGPS: an R package for reading and visualizing cytogenetics data

Abstract Summary Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-12, Vol.37 (23), p.4589-4590
Hauptverfasser: Abrams, Zachary B, Tally, Dwayne G, Abruzzo, Lynne V, Coombes, Kevin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4590
container_issue 23
container_start_page 4589
container_title Bioinformatics
container_volume 37
creator Abrams, Zachary B
Tally, Dwayne G
Abruzzo, Lynne V
Coombes, Kevin R
description Abstract Summary Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale computational analyses due to limitations in the ISCN text format and structure. Recently developed computational tools such as CytoGPS have enabled large-scale computational analyses of karyotypes. To further enable such analyses, we have now developed RCytoGPS, an R package that takes JSON files generated from CytoGPS.org and converts them into objects in R. This conversion facilitates the analysis and visualizations of karyotype data. In effect this tool streamlines the process of performing large-scale karyotype analyses, thus advancing the field of computational cytogenetic pathology. Availability and implementation Freely available at https://CRAN.R-project.org/package=RCytoGPS. The code for the underlying CytoGPS software can be found at https://github.com/i2-wustl/CytoGPS
doi_str_mv 10.1093/bioinformatics/btab683
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10262354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab683</oup_id><sourcerecordid>2579085864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-b24d16bcb6f6ccab1a9fb47cc13f8bc8ec4ee5bd8b80c1868ce2a6a08bba0a8f3</originalsourceid><addsrcrecordid>eNqNkcFOwzAQRC0EoqXwC1WOXELtxHZcLggVKEhIoAJna-04xZDEIU4qla8nUUtFb5y81r6ZXe0gNCb4guBpPFHW2TJzdQGN1X6iGlBcxAdoSCjHYYTZ9LCrY56EVOB4gE68_8CYEUrpMRrEHUQYo0N0s5itGzd_frkMoAwWQQX6E5Ym6KyD2kBqy2XXSIOV9S3k9rv_606xNKXpJwcpNHCKjjLIvTnbviP0dnf7OrsPH5_mD7Prx1BTljShimhKuNKKZ1xrUASmmaKJ1iTOhNLCaGoMU6lQAmsiuNAmAg5YKAUYRBaP0NXGt2pVYVJtyqaGXFa1LaBeSwdW7ndK-y6XbiUJjngUM9o5nG8davfVGt_Iwnpt8hxK41ovI5ZMsWCC9yjfoLp23tcm280hWPYZyP0M5DaDTjj-u-VO9nv0DiAbwLXVf01_ADPsnPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579085864</pqid></control><display><type>article</type><title>RCytoGPS: an R package for reading and visualizing cytogenetics data</title><source>Oxford University Press Open Access</source><creator>Abrams, Zachary B ; Tally, Dwayne G ; Abruzzo, Lynne V ; Coombes, Kevin R</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrams, Zachary B ; Tally, Dwayne G ; Abruzzo, Lynne V ; Coombes, Kevin R ; Wren, Jonathan</creatorcontrib><description>Abstract Summary Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale computational analyses due to limitations in the ISCN text format and structure. Recently developed computational tools such as CytoGPS have enabled large-scale computational analyses of karyotypes. To further enable such analyses, we have now developed RCytoGPS, an R package that takes JSON files generated from CytoGPS.org and converts them into objects in R. This conversion facilitates the analysis and visualizations of karyotype data. In effect this tool streamlines the process of performing large-scale karyotype analyses, thus advancing the field of computational cytogenetic pathology. Availability and implementation Freely available at https://CRAN.R-project.org/package=RCytoGPS. The code for the underlying CytoGPS software can be found at https://github.com/i2-wustl/CytoGPS</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab683</identifier><identifier>PMID: 34601554</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Notes ; Humans ; Karyotype ; Karyotyping ; Reading ; Software</subject><ispartof>Bioinformatics, 2021-12, Vol.37 (23), p.4589-4590</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-b24d16bcb6f6ccab1a9fb47cc13f8bc8ec4ee5bd8b80c1868ce2a6a08bba0a8f3</citedby><cites>FETCH-LOGICAL-c457t-b24d16bcb6f6ccab1a9fb47cc13f8bc8ec4ee5bd8b80c1868ce2a6a08bba0a8f3</cites><orcidid>0000-0001-5219-9996 ; 0000-0002-7630-2123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262354/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262354/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab683$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34601554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrams, Zachary B</creatorcontrib><creatorcontrib>Tally, Dwayne G</creatorcontrib><creatorcontrib>Abruzzo, Lynne V</creatorcontrib><creatorcontrib>Coombes, Kevin R</creatorcontrib><title>RCytoGPS: an R package for reading and visualizing cytogenetics data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Summary Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale computational analyses due to limitations in the ISCN text format and structure. Recently developed computational tools such as CytoGPS have enabled large-scale computational analyses of karyotypes. To further enable such analyses, we have now developed RCytoGPS, an R package that takes JSON files generated from CytoGPS.org and converts them into objects in R. This conversion facilitates the analysis and visualizations of karyotype data. In effect this tool streamlines the process of performing large-scale karyotype analyses, thus advancing the field of computational cytogenetic pathology. Availability and implementation Freely available at https://CRAN.R-project.org/package=RCytoGPS. The code for the underlying CytoGPS software can be found at https://github.com/i2-wustl/CytoGPS</description><subject>Applications Notes</subject><subject>Humans</subject><subject>Karyotype</subject><subject>Karyotyping</subject><subject>Reading</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFOwzAQRC0EoqXwC1WOXELtxHZcLggVKEhIoAJna-04xZDEIU4qla8nUUtFb5y81r6ZXe0gNCb4guBpPFHW2TJzdQGN1X6iGlBcxAdoSCjHYYTZ9LCrY56EVOB4gE68_8CYEUrpMRrEHUQYo0N0s5itGzd_frkMoAwWQQX6E5Ym6KyD2kBqy2XXSIOV9S3k9rv_606xNKXpJwcpNHCKjjLIvTnbviP0dnf7OrsPH5_mD7Prx1BTljShimhKuNKKZ1xrUASmmaKJ1iTOhNLCaGoMU6lQAmsiuNAmAg5YKAUYRBaP0NXGt2pVYVJtyqaGXFa1LaBeSwdW7ndK-y6XbiUJjngUM9o5nG8davfVGt_Iwnpt8hxK41ovI5ZMsWCC9yjfoLp23tcm280hWPYZyP0M5DaDTjj-u-VO9nv0DiAbwLXVf01_ADPsnPg</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Abrams, Zachary B</creator><creator>Tally, Dwayne G</creator><creator>Abruzzo, Lynne V</creator><creator>Coombes, Kevin R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5219-9996</orcidid><orcidid>https://orcid.org/0000-0002-7630-2123</orcidid></search><sort><creationdate>20211207</creationdate><title>RCytoGPS: an R package for reading and visualizing cytogenetics data</title><author>Abrams, Zachary B ; Tally, Dwayne G ; Abruzzo, Lynne V ; Coombes, Kevin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-b24d16bcb6f6ccab1a9fb47cc13f8bc8ec4ee5bd8b80c1868ce2a6a08bba0a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications Notes</topic><topic>Humans</topic><topic>Karyotype</topic><topic>Karyotyping</topic><topic>Reading</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrams, Zachary B</creatorcontrib><creatorcontrib>Tally, Dwayne G</creatorcontrib><creatorcontrib>Abruzzo, Lynne V</creatorcontrib><creatorcontrib>Coombes, Kevin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abrams, Zachary B</au><au>Tally, Dwayne G</au><au>Abruzzo, Lynne V</au><au>Coombes, Kevin R</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RCytoGPS: an R package for reading and visualizing cytogenetics data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>37</volume><issue>23</issue><spage>4589</spage><epage>4590</epage><pages>4589-4590</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Summary Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale computational analyses due to limitations in the ISCN text format and structure. Recently developed computational tools such as CytoGPS have enabled large-scale computational analyses of karyotypes. To further enable such analyses, we have now developed RCytoGPS, an R package that takes JSON files generated from CytoGPS.org and converts them into objects in R. This conversion facilitates the analysis and visualizations of karyotype data. In effect this tool streamlines the process of performing large-scale karyotype analyses, thus advancing the field of computational cytogenetic pathology. Availability and implementation Freely available at https://CRAN.R-project.org/package=RCytoGPS. The code for the underlying CytoGPS software can be found at https://github.com/i2-wustl/CytoGPS</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34601554</pmid><doi>10.1093/bioinformatics/btab683</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-5219-9996</orcidid><orcidid>https://orcid.org/0000-0002-7630-2123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2021-12, Vol.37 (23), p.4589-4590
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10262354
source Oxford University Press Open Access
subjects Applications Notes
Humans
Karyotype
Karyotyping
Reading
Software
title RCytoGPS: an R package for reading and visualizing cytogenetics data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RCytoGPS:%20an%20R%20package%20for%20reading%20and%20visualizing%20cytogenetics%20data&rft.jtitle=Bioinformatics&rft.au=Abrams,%20Zachary%20B&rft.date=2021-12-07&rft.volume=37&rft.issue=23&rft.spage=4589&rft.epage=4590&rft.pages=4589-4590&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab683&rft_dat=%3Cproquest_TOX%3E2579085864%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579085864&rft_id=info:pmid/34601554&rft_oup_id=10.1093/bioinformatics/btab683&rfr_iscdi=true