Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data
Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models th...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2023-01, Vol.75, p.181-191 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | |
container_start_page | 181 |
container_title | Metabolic engineering |
container_volume | 75 |
creator | Gopalakrishnan, Saratram Joshi, Chintan J. Valderrama-Gómez, Miguel Á. Icten, Elcin Rolandi, Pablo Johnson, William Kontoravdi, Cleo Lewis, Nathan E. |
description | Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.
•Phenotype must be protected during model extraction using gene expression data.•Choice of algorithm influences scope of alternate solutions.•ROC plots are effective tools to screen and select best-performing models.•Proposed workflow guides the extraction of biologically meaningful models. |
doi_str_mv | 10.1016/j.ymben.2022.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717622001525</els_id><sourcerecordid>2758354653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-de64562bc0633d0e2d4b103a61dcacfc9bb584d1d4ec9203ced2cb5e461393c03</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSNERUvhEyChHLkk-E_sJAeEUFUKUqVe4GzZ48nilWMvdrJivz3eblnBhdOMNO-98fhXVW8oaSmh8v22PcwGQ8sIYy1lLSH8WXVFySibng7d83Pfy8vqZc5bQigVI31RXXIppBz77qryd6uz6F3AXE8x1fhrSRoWFza1cdHHjQPt_aFO6HGvw1JDDEsRNXmH4CYH9YyLNtEfu1iScr3mo3uDAUvaLmHOLoba6kW_qi4m7TO-fqrX1ffPt99uvjT3D3dfbz7dN9BJsjQWZSckM0Ak55Ygs52hhGtJLWiYYDRGDJ2ltkMYGeGAloER2EnKRw6EX1cfT7m71cxoAUM5yqtdcrNOBxW1U_9OgvuhNnGvKGFiGGRfEt49JaT4c8W8qNllQO91wLhmxXoxcNFJwYuUn6SQYs4Jp_MeStQRlNqqR1DqCEpRpgqo4nr79xPPnj9kiuDDSVC-FPcOk8rgMJRbXUJYlI3uvwt-A31OqfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758354653</pqid></control><display><type>article</type><title>Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gopalakrishnan, Saratram ; Joshi, Chintan J. ; Valderrama-Gómez, Miguel Á. ; Icten, Elcin ; Rolandi, Pablo ; Johnson, William ; Kontoravdi, Cleo ; Lewis, Nathan E.</creator><creatorcontrib>Gopalakrishnan, Saratram ; Joshi, Chintan J. ; Valderrama-Gómez, Miguel Á. ; Icten, Elcin ; Rolandi, Pablo ; Johnson, William ; Kontoravdi, Cleo ; Lewis, Nathan E.</creatorcontrib><description>Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.
•Phenotype must be protected during model extraction using gene expression data.•Choice of algorithm influences scope of alternate solutions.•ROC plots are effective tools to screen and select best-performing models.•Proposed workflow guides the extraction of biologically meaningful models.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2022.12.003</identifier><identifier>PMID: 36566974</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Animals ; Constraint-based models ; Context-specific models ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Genome ; Mammals - genetics ; Metabolic modeling ; Metabolic Networks and Pathways ; Model extraction methods ; Models, Biological ; Systems biology</subject><ispartof>Metabolic engineering, 2023-01, Vol.75, p.181-191</ispartof><rights>2022 International Metabolic Engineering Society</rights><rights>Copyright © 2022 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-de64562bc0633d0e2d4b103a61dcacfc9bb584d1d4ec9203ced2cb5e461393c03</citedby><cites>FETCH-LOGICAL-c460t-de64562bc0633d0e2d4b103a61dcacfc9bb584d1d4ec9203ced2cb5e461393c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2022.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36566974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gopalakrishnan, Saratram</creatorcontrib><creatorcontrib>Joshi, Chintan J.</creatorcontrib><creatorcontrib>Valderrama-Gómez, Miguel Á.</creatorcontrib><creatorcontrib>Icten, Elcin</creatorcontrib><creatorcontrib>Rolandi, Pablo</creatorcontrib><creatorcontrib>Johnson, William</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><title>Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.
•Phenotype must be protected during model extraction using gene expression data.•Choice of algorithm influences scope of alternate solutions.•ROC plots are effective tools to screen and select best-performing models.•Proposed workflow guides the extraction of biologically meaningful models.</description><subject>Animals</subject><subject>Constraint-based models</subject><subject>Context-specific models</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Genome</subject><subject>Mammals - genetics</subject><subject>Metabolic modeling</subject><subject>Metabolic Networks and Pathways</subject><subject>Model extraction methods</subject><subject>Models, Biological</subject><subject>Systems biology</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSNERUvhEyChHLkk-E_sJAeEUFUKUqVe4GzZ48nilWMvdrJivz3eblnBhdOMNO-98fhXVW8oaSmh8v22PcwGQ8sIYy1lLSH8WXVFySibng7d83Pfy8vqZc5bQigVI31RXXIppBz77qryd6uz6F3AXE8x1fhrSRoWFza1cdHHjQPt_aFO6HGvw1JDDEsRNXmH4CYH9YyLNtEfu1iScr3mo3uDAUvaLmHOLoba6kW_qi4m7TO-fqrX1ffPt99uvjT3D3dfbz7dN9BJsjQWZSckM0Ak55Ygs52hhGtJLWiYYDRGDJ2ltkMYGeGAloER2EnKRw6EX1cfT7m71cxoAUM5yqtdcrNOBxW1U_9OgvuhNnGvKGFiGGRfEt49JaT4c8W8qNllQO91wLhmxXoxcNFJwYuUn6SQYs4Jp_MeStQRlNqqR1DqCEpRpgqo4nr79xPPnj9kiuDDSVC-FPcOk8rgMJRbXUJYlI3uvwt-A31OqfU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Gopalakrishnan, Saratram</creator><creator>Joshi, Chintan J.</creator><creator>Valderrama-Gómez, Miguel Á.</creator><creator>Icten, Elcin</creator><creator>Rolandi, Pablo</creator><creator>Johnson, William</creator><creator>Kontoravdi, Cleo</creator><creator>Lewis, Nathan E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230101</creationdate><title>Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data</title><author>Gopalakrishnan, Saratram ; Joshi, Chintan J. ; Valderrama-Gómez, Miguel Á. ; Icten, Elcin ; Rolandi, Pablo ; Johnson, William ; Kontoravdi, Cleo ; Lewis, Nathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-de64562bc0633d0e2d4b103a61dcacfc9bb584d1d4ec9203ced2cb5e461393c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Constraint-based models</topic><topic>Context-specific models</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Genome</topic><topic>Mammals - genetics</topic><topic>Metabolic modeling</topic><topic>Metabolic Networks and Pathways</topic><topic>Model extraction methods</topic><topic>Models, Biological</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, Saratram</creatorcontrib><creatorcontrib>Joshi, Chintan J.</creatorcontrib><creatorcontrib>Valderrama-Gómez, Miguel Á.</creatorcontrib><creatorcontrib>Icten, Elcin</creatorcontrib><creatorcontrib>Rolandi, Pablo</creatorcontrib><creatorcontrib>Johnson, William</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishnan, Saratram</au><au>Joshi, Chintan J.</au><au>Valderrama-Gómez, Miguel Á.</au><au>Icten, Elcin</au><au>Rolandi, Pablo</au><au>Johnson, William</au><au>Kontoravdi, Cleo</au><au>Lewis, Nathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>75</volume><spage>181</spage><epage>191</epage><pages>181-191</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Genome-scale metabolic models comprehensively describe an organism's metabolism and can be tailored using omics data to model condition-specific physiology. The quality of context-specific models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific models that equally explain the -omics data. Here we quantify the influence of alternate optima on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We find that metabolic tasks defining an organism's phenotype must be explicitly and quantitatively protected. The scope of alternate models is strongly influenced by algorithm choice and the topological properties of the parent genome-scale model with fatty acid metabolism and intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE extracted the most reproducible context-specific models and models generated using MBA had the most alternate solutions. There were fewer qualitatively different solutions generated by GIMME in E. coli, but these increased substantially in the mammalian models. Screening ensembles using a receiver operating characteristic plot identified the best-performing models. A comprehensive evaluation of models extracted using combinations of extraction methods and expression thresholds revealed that GIMME generated the best-performing models in E. coli, whereas mCADRE is better suited for complex mammalian models. These findings suggest guidelines for benchmarking -omics integration algorithms and motivate the development of a systematic workflow to enumerate alternate models and extract biologically relevant context-specific models.
•Phenotype must be protected during model extraction using gene expression data.•Choice of algorithm influences scope of alternate solutions.•ROC plots are effective tools to screen and select best-performing models.•Proposed workflow guides the extraction of biologically meaningful models.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>36566974</pmid><doi>10.1016/j.ymben.2022.12.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2023-01, Vol.75, p.181-191 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258867 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Constraint-based models Context-specific models Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Genome Mammals - genetics Metabolic modeling Metabolic Networks and Pathways Model extraction methods Models, Biological Systems biology |
title | Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guidelines%20for%20extracting%20biologically%20relevant%20context-specific%20metabolic%20models%20using%20gene%20expression%20data&rft.jtitle=Metabolic%20engineering&rft.au=Gopalakrishnan,%20Saratram&rft.date=2023-01-01&rft.volume=75&rft.spage=181&rft.epage=191&rft.pages=181-191&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2022.12.003&rft_dat=%3Cproquest_pubme%3E2758354653%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758354653&rft_id=info:pmid/36566974&rft_els_id=S1096717622001525&rfr_iscdi=true |