Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation
Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical in...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-05, Vol.15 (11), p.2518 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2518 |
container_title | Polymers |
container_volume | 15 |
creator | Sekula, Robert Immonen, Kirsi Metsä-Kortelainen, Sini Kuniewski, Maciej Zydroń, Paweł Kalpio, Tomi |
description | Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality. |
doi_str_mv | 10.3390/polym15112518 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752559252</galeid><sourcerecordid>A752559252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</originalsourceid><addsrcrecordid>eNpdkc9vFCEUx4nR2Gbt0ash8eJlKj-GYeZk1rW1TZroQXulDPPYpWFghBmT_velu7VphQOE9-H7vi9fhN5Tcsp5Rz5P0d-NVFDKBG1foWNGJK9q3pDXz-5H6CTnW1JWLZqGyrfoiEvWdZx2x-hms9NJmxmSy7MzGUeL-Tf8M7kww4C_urjvASljGxNeT5N3Rs8uhoxdwBduu6uuo5_1FvCZBzOnUvb4MuTF77F36I3VPsPJ47lCv8_Pfm0uqqsf3y8366vK1ELM1QDUaIDBECYGIxmX1PQw1PVAdW1BtrbvCYPGEiFIqzstCe8HNpiWCml5z1foy0F3Wvqx6ECYk_ZqSm7U6U5F7dTLSnA7tY1_FS0dRd2KovDpUSHFPwvkWY0uG_BeB4hLVqxlddPxtphboY__obdxSaHMt6cI5bJrC3V6oLbag3LBxtLYlD3A6EwMYF15X0tRDHRMPMhWhw8mxZwT2Cf7lKiHwNWLwAv_4fnMT_S_ePk9k3uowA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824013798</pqid></control><display><type>article</type><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</creator><creatorcontrib>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</creatorcontrib><description>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15112518</identifier><identifier>PMID: 37299319</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Biopolymers ; Cellulose ; Composite materials ; Control equipment industry ; Crepe ; Dielectric properties ; Electric properties ; Electric transformers ; Electrical insulation ; Electrical measurement ; Epoxy resins ; Filaments ; High voltages ; Laser sintering ; Molding (process) ; Polymers ; Power electronics ; Silicone rubber ; Technology ; Technology application ; Three dimensional printing ; Transformers ; Wood laminates</subject><ispartof>Polymers, 2023-05, Vol.15 (11), p.2518</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</citedby><cites>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</cites><orcidid>0000-0003-1785-2878 ; 0000-0002-7597-3953 ; 0000-0003-0631-6711 ; 0000-0002-1340-9599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37299319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekula, Robert</creatorcontrib><creatorcontrib>Immonen, Kirsi</creatorcontrib><creatorcontrib>Metsä-Kortelainen, Sini</creatorcontrib><creatorcontrib>Kuniewski, Maciej</creatorcontrib><creatorcontrib>Zydroń, Paweł</creatorcontrib><creatorcontrib>Kalpio, Tomi</creatorcontrib><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Biopolymers</subject><subject>Cellulose</subject><subject>Composite materials</subject><subject>Control equipment industry</subject><subject>Crepe</subject><subject>Dielectric properties</subject><subject>Electric properties</subject><subject>Electric transformers</subject><subject>Electrical insulation</subject><subject>Electrical measurement</subject><subject>Epoxy resins</subject><subject>Filaments</subject><subject>High voltages</subject><subject>Laser sintering</subject><subject>Molding (process)</subject><subject>Polymers</subject><subject>Power electronics</subject><subject>Silicone rubber</subject><subject>Technology</subject><subject>Technology application</subject><subject>Three dimensional printing</subject><subject>Transformers</subject><subject>Wood laminates</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9vFCEUx4nR2Gbt0ash8eJlKj-GYeZk1rW1TZroQXulDPPYpWFghBmT_velu7VphQOE9-H7vi9fhN5Tcsp5Rz5P0d-NVFDKBG1foWNGJK9q3pDXz-5H6CTnW1JWLZqGyrfoiEvWdZx2x-hms9NJmxmSy7MzGUeL-Tf8M7kww4C_urjvASljGxNeT5N3Rs8uhoxdwBduu6uuo5_1FvCZBzOnUvb4MuTF77F36I3VPsPJ47lCv8_Pfm0uqqsf3y8366vK1ELM1QDUaIDBECYGIxmX1PQw1PVAdW1BtrbvCYPGEiFIqzstCe8HNpiWCml5z1foy0F3Wvqx6ECYk_ZqSm7U6U5F7dTLSnA7tY1_FS0dRd2KovDpUSHFPwvkWY0uG_BeB4hLVqxlddPxtphboY__obdxSaHMt6cI5bJrC3V6oLbag3LBxtLYlD3A6EwMYF15X0tRDHRMPMhWhw8mxZwT2Cf7lKiHwNWLwAv_4fnMT_S_ePk9k3uowA</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Sekula, Robert</creator><creator>Immonen, Kirsi</creator><creator>Metsä-Kortelainen, Sini</creator><creator>Kuniewski, Maciej</creator><creator>Zydroń, Paweł</creator><creator>Kalpio, Tomi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1785-2878</orcidid><orcidid>https://orcid.org/0000-0002-7597-3953</orcidid><orcidid>https://orcid.org/0000-0003-0631-6711</orcidid><orcidid>https://orcid.org/0000-0002-1340-9599</orcidid></search><sort><creationdate>20230530</creationdate><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><author>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Biopolymers</topic><topic>Cellulose</topic><topic>Composite materials</topic><topic>Control equipment industry</topic><topic>Crepe</topic><topic>Dielectric properties</topic><topic>Electric properties</topic><topic>Electric transformers</topic><topic>Electrical insulation</topic><topic>Electrical measurement</topic><topic>Epoxy resins</topic><topic>Filaments</topic><topic>High voltages</topic><topic>Laser sintering</topic><topic>Molding (process)</topic><topic>Polymers</topic><topic>Power electronics</topic><topic>Silicone rubber</topic><topic>Technology</topic><topic>Technology application</topic><topic>Three dimensional printing</topic><topic>Transformers</topic><topic>Wood laminates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekula, Robert</creatorcontrib><creatorcontrib>Immonen, Kirsi</creatorcontrib><creatorcontrib>Metsä-Kortelainen, Sini</creatorcontrib><creatorcontrib>Kuniewski, Maciej</creatorcontrib><creatorcontrib>Zydroń, Paweł</creatorcontrib><creatorcontrib>Kalpio, Tomi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekula, Robert</au><au>Immonen, Kirsi</au><au>Metsä-Kortelainen, Sini</au><au>Kuniewski, Maciej</au><au>Zydroń, Paweł</au><au>Kalpio, Tomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>2518</spage><pages>2518-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37299319</pmid><doi>10.3390/polym15112518</doi><orcidid>https://orcid.org/0000-0003-1785-2878</orcidid><orcidid>https://orcid.org/0000-0002-7597-3953</orcidid><orcidid>https://orcid.org/0000-0003-0631-6711</orcidid><orcidid>https://orcid.org/0000-0002-1340-9599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2023-05, Vol.15 (11), p.2518 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255485 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-D printers 3D printing Additive manufacturing Biopolymers Cellulose Composite materials Control equipment industry Crepe Dielectric properties Electric properties Electric transformers Electrical insulation Electrical measurement Epoxy resins Filaments High voltages Laser sintering Molding (process) Polymers Power electronics Silicone rubber Technology Technology application Three dimensional printing Transformers Wood laminates |
title | Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%203D%20Printed%20Biopolymers%20for%20Applications%20in%20High-Voltage%20Electrical%20Insulation&rft.jtitle=Polymers&rft.au=Sekula,%20Robert&rft.date=2023-05-30&rft.volume=15&rft.issue=11&rft.spage=2518&rft.pages=2518-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15112518&rft_dat=%3Cgale_pubme%3EA752559252%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824013798&rft_id=info:pmid/37299319&rft_galeid=A752559252&rfr_iscdi=true |