Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation

Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-05, Vol.15 (11), p.2518
Hauptverfasser: Sekula, Robert, Immonen, Kirsi, Metsä-Kortelainen, Sini, Kuniewski, Maciej, Zydroń, Paweł, Kalpio, Tomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2518
container_title Polymers
container_volume 15
creator Sekula, Robert
Immonen, Kirsi
Metsä-Kortelainen, Sini
Kuniewski, Maciej
Zydroń, Paweł
Kalpio, Tomi
description Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.
doi_str_mv 10.3390/polym15112518
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752559252</galeid><sourcerecordid>A752559252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</originalsourceid><addsrcrecordid>eNpdkc9vFCEUx4nR2Gbt0ash8eJlKj-GYeZk1rW1TZroQXulDPPYpWFghBmT_velu7VphQOE9-H7vi9fhN5Tcsp5Rz5P0d-NVFDKBG1foWNGJK9q3pDXz-5H6CTnW1JWLZqGyrfoiEvWdZx2x-hms9NJmxmSy7MzGUeL-Tf8M7kww4C_urjvASljGxNeT5N3Rs8uhoxdwBduu6uuo5_1FvCZBzOnUvb4MuTF77F36I3VPsPJ47lCv8_Pfm0uqqsf3y8366vK1ELM1QDUaIDBECYGIxmX1PQw1PVAdW1BtrbvCYPGEiFIqzstCe8HNpiWCml5z1foy0F3Wvqx6ECYk_ZqSm7U6U5F7dTLSnA7tY1_FS0dRd2KovDpUSHFPwvkWY0uG_BeB4hLVqxlddPxtphboY__obdxSaHMt6cI5bJrC3V6oLbag3LBxtLYlD3A6EwMYF15X0tRDHRMPMhWhw8mxZwT2Cf7lKiHwNWLwAv_4fnMT_S_ePk9k3uowA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824013798</pqid></control><display><type>article</type><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</creator><creatorcontrib>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</creatorcontrib><description>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15112518</identifier><identifier>PMID: 37299319</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Biopolymers ; Cellulose ; Composite materials ; Control equipment industry ; Crepe ; Dielectric properties ; Electric properties ; Electric transformers ; Electrical insulation ; Electrical measurement ; Epoxy resins ; Filaments ; High voltages ; Laser sintering ; Molding (process) ; Polymers ; Power electronics ; Silicone rubber ; Technology ; Technology application ; Three dimensional printing ; Transformers ; Wood laminates</subject><ispartof>Polymers, 2023-05, Vol.15 (11), p.2518</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</citedby><cites>FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</cites><orcidid>0000-0003-1785-2878 ; 0000-0002-7597-3953 ; 0000-0003-0631-6711 ; 0000-0002-1340-9599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37299319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekula, Robert</creatorcontrib><creatorcontrib>Immonen, Kirsi</creatorcontrib><creatorcontrib>Metsä-Kortelainen, Sini</creatorcontrib><creatorcontrib>Kuniewski, Maciej</creatorcontrib><creatorcontrib>Zydroń, Paweł</creatorcontrib><creatorcontrib>Kalpio, Tomi</creatorcontrib><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Biopolymers</subject><subject>Cellulose</subject><subject>Composite materials</subject><subject>Control equipment industry</subject><subject>Crepe</subject><subject>Dielectric properties</subject><subject>Electric properties</subject><subject>Electric transformers</subject><subject>Electrical insulation</subject><subject>Electrical measurement</subject><subject>Epoxy resins</subject><subject>Filaments</subject><subject>High voltages</subject><subject>Laser sintering</subject><subject>Molding (process)</subject><subject>Polymers</subject><subject>Power electronics</subject><subject>Silicone rubber</subject><subject>Technology</subject><subject>Technology application</subject><subject>Three dimensional printing</subject><subject>Transformers</subject><subject>Wood laminates</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9vFCEUx4nR2Gbt0ash8eJlKj-GYeZk1rW1TZroQXulDPPYpWFghBmT_velu7VphQOE9-H7vi9fhN5Tcsp5Rz5P0d-NVFDKBG1foWNGJK9q3pDXz-5H6CTnW1JWLZqGyrfoiEvWdZx2x-hms9NJmxmSy7MzGUeL-Tf8M7kww4C_urjvASljGxNeT5N3Rs8uhoxdwBduu6uuo5_1FvCZBzOnUvb4MuTF77F36I3VPsPJ47lCv8_Pfm0uqqsf3y8366vK1ELM1QDUaIDBECYGIxmX1PQw1PVAdW1BtrbvCYPGEiFIqzstCe8HNpiWCml5z1foy0F3Wvqx6ECYk_ZqSm7U6U5F7dTLSnA7tY1_FS0dRd2KovDpUSHFPwvkWY0uG_BeB4hLVqxlddPxtphboY__obdxSaHMt6cI5bJrC3V6oLbag3LBxtLYlD3A6EwMYF15X0tRDHRMPMhWhw8mxZwT2Cf7lKiHwNWLwAv_4fnMT_S_ePk9k3uowA</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Sekula, Robert</creator><creator>Immonen, Kirsi</creator><creator>Metsä-Kortelainen, Sini</creator><creator>Kuniewski, Maciej</creator><creator>Zydroń, Paweł</creator><creator>Kalpio, Tomi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1785-2878</orcidid><orcidid>https://orcid.org/0000-0002-7597-3953</orcidid><orcidid>https://orcid.org/0000-0003-0631-6711</orcidid><orcidid>https://orcid.org/0000-0002-1340-9599</orcidid></search><sort><creationdate>20230530</creationdate><title>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</title><author>Sekula, Robert ; Immonen, Kirsi ; Metsä-Kortelainen, Sini ; Kuniewski, Maciej ; Zydroń, Paweł ; Kalpio, Tomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-de1caeedc025dc72371cbed44d1a4fe78fbb02e6f05508a9a703bd2dc8157f3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Biopolymers</topic><topic>Cellulose</topic><topic>Composite materials</topic><topic>Control equipment industry</topic><topic>Crepe</topic><topic>Dielectric properties</topic><topic>Electric properties</topic><topic>Electric transformers</topic><topic>Electrical insulation</topic><topic>Electrical measurement</topic><topic>Epoxy resins</topic><topic>Filaments</topic><topic>High voltages</topic><topic>Laser sintering</topic><topic>Molding (process)</topic><topic>Polymers</topic><topic>Power electronics</topic><topic>Silicone rubber</topic><topic>Technology</topic><topic>Technology application</topic><topic>Three dimensional printing</topic><topic>Transformers</topic><topic>Wood laminates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekula, Robert</creatorcontrib><creatorcontrib>Immonen, Kirsi</creatorcontrib><creatorcontrib>Metsä-Kortelainen, Sini</creatorcontrib><creatorcontrib>Kuniewski, Maciej</creatorcontrib><creatorcontrib>Zydroń, Paweł</creatorcontrib><creatorcontrib>Kalpio, Tomi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekula, Robert</au><au>Immonen, Kirsi</au><au>Metsä-Kortelainen, Sini</au><au>Kuniewski, Maciej</au><au>Zydroń, Paweł</au><au>Kalpio, Tomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>2518</spage><pages>2518-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37299319</pmid><doi>10.3390/polym15112518</doi><orcidid>https://orcid.org/0000-0003-1785-2878</orcidid><orcidid>https://orcid.org/0000-0002-7597-3953</orcidid><orcidid>https://orcid.org/0000-0003-0631-6711</orcidid><orcidid>https://orcid.org/0000-0002-1340-9599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-05, Vol.15 (11), p.2518
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255485
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3-D printers
3D printing
Additive manufacturing
Biopolymers
Cellulose
Composite materials
Control equipment industry
Crepe
Dielectric properties
Electric properties
Electric transformers
Electrical insulation
Electrical measurement
Epoxy resins
Filaments
High voltages
Laser sintering
Molding (process)
Polymers
Power electronics
Silicone rubber
Technology
Technology application
Three dimensional printing
Transformers
Wood laminates
title Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%203D%20Printed%20Biopolymers%20for%20Applications%20in%20High-Voltage%20Electrical%20Insulation&rft.jtitle=Polymers&rft.au=Sekula,%20Robert&rft.date=2023-05-30&rft.volume=15&rft.issue=11&rft.spage=2518&rft.pages=2518-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15112518&rft_dat=%3Cgale_pubme%3EA752559252%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824013798&rft_id=info:pmid/37299319&rft_galeid=A752559252&rfr_iscdi=true