A microfluidic biosensor architecture for the rapid detection of COVID-19

The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2023-09, Vol.1275, p.341378, Article 341378
Hauptverfasser: Muhsin, Sura A., He, Ying, Al-Amidie, Muthana, Sergovia, Karen, Abdullah, Amjed, Wang, Yang, Alkorjia, Omar, Hulsey, Robert A., Hunter, Gary L., Erdal, Zeynep K., Pletka, Ryan J., George, Hyleme S., Wan, Xiu-Feng, Almasri, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 341378
container_title Analytica chimica acta
container_volume 1275
creator Muhsin, Sura A.
He, Ying
Al-Amidie, Muthana
Sergovia, Karen
Abdullah, Amjed
Wang, Yang
Alkorjia, Omar
Hulsey, Robert A.
Hunter, Gary L.
Erdal, Zeynep K.
Pletka, Ryan J.
George, Hyleme S.
Wan, Xiu-Feng
Almasri, Mahmoud
description The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml. [Display omitted] •The biosensor was able to detect SARS-COV-2 in clinical sample with a concentration as low as 26 TCID50/ml in 40 min.•The focusing and trapping electrode pairs maximized the number of captured viruses on top of the detection electrode, improving the detection sensitivity.•Detection of SARS-COV-2 virus with high specificity and selectivity.
doi_str_mv 10.1016/j.aca.2023.341378
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10251744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267023005998</els_id><sourcerecordid>2844680103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-8d284ab3bd478491908f2849e3778995a960d62d79e92664ff3cbfab69d5e0aa3</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFSWlcdz-gFzKHnNZR18rreghBLdJDAFf2l6FVhrVMuuVK-0a8u8j4yQ0l56GefPmzfAeQpcELwgm4nq7MNYsKKZswThhsv2AZqSVrOaM8jM0wxizmgqJz9FFztvSUoL5J3TOZEM5b8QMrW6rXbAp-n4KLtiqCzHDkGOqTLKbMIIdpwSVL8C4gSqZfXCVgyMe4lBFXy3Xv1ffa6I-o4_e9Bm-vNQ5-nX34-fyoX5c36-Wt4-15Q0d69bRlpuOdY7LliuicOsLooBJ2SrVGCWwE9RJBYoKwb1ntvOmE8o1gI1hc3Rz0t1P3Q6chWFMptf7FHYmPelogn4_GcJG_4kHTTBtiOS8KFy9KKT4d4I86l3IFvreDBCnrMs7XLSYYFao5EQtFuWcwL_dIVgfM9BbXTLQxwz0KYOy8_XfB982Xk0vhG8nAhSbDgGSzjbAYMGFVHzVLob_yD8D4tiWgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844680103</pqid></control><display><type>article</type><title>A microfluidic biosensor architecture for the rapid detection of COVID-19</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Muhsin, Sura A. ; He, Ying ; Al-Amidie, Muthana ; Sergovia, Karen ; Abdullah, Amjed ; Wang, Yang ; Alkorjia, Omar ; Hulsey, Robert A. ; Hunter, Gary L. ; Erdal, Zeynep K. ; Pletka, Ryan J. ; George, Hyleme S. ; Wan, Xiu-Feng ; Almasri, Mahmoud</creator><creatorcontrib>Muhsin, Sura A. ; He, Ying ; Al-Amidie, Muthana ; Sergovia, Karen ; Abdullah, Amjed ; Wang, Yang ; Alkorjia, Omar ; Hulsey, Robert A. ; Hunter, Gary L. ; Erdal, Zeynep K. ; Pletka, Ryan J. ; George, Hyleme S. ; Wan, Xiu-Feng ; Almasri, Mahmoud</creatorcontrib><description>The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml. [Display omitted] •The biosensor was able to detect SARS-COV-2 in clinical sample with a concentration as low as 26 TCID50/ml in 40 min.•The focusing and trapping electrode pairs maximized the number of captured viruses on top of the detection electrode, improving the detection sensitivity.•Detection of SARS-COV-2 virus with high specificity and selectivity.</description><identifier>ISSN: 0003-2670</identifier><identifier>ISSN: 1873-4324</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2023.341378</identifier><identifier>PMID: 37524456</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biosensing Techniques ; Biosensor ; Clinical Laboratory Techniques - methods ; COVID-19 - diagnosis ; COVID-19 Testing ; Dielectrophoresis ; Humans ; Impedance measurement ; Microfluidic ; Microfluidics ; Nucleic Acid Amplification Techniques - methods ; Polymerase chain reaction (PCR) ; SARS-COV-2 ; Sensitivity and Specificity ; Trapping and focusing electrodes</subject><ispartof>Analytica chimica acta, 2023-09, Vol.1275, p.341378, Article 341378</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><rights>2023 Published by Elsevier B.V. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-8d284ab3bd478491908f2849e3778995a960d62d79e92664ff3cbfab69d5e0aa3</citedby><cites>FETCH-LOGICAL-c452t-8d284ab3bd478491908f2849e3778995a960d62d79e92664ff3cbfab69d5e0aa3</cites><orcidid>0000-0002-1571-7309 ; 0000-0002-6527-864X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2023.341378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37524456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muhsin, Sura A.</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Al-Amidie, Muthana</creatorcontrib><creatorcontrib>Sergovia, Karen</creatorcontrib><creatorcontrib>Abdullah, Amjed</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Alkorjia, Omar</creatorcontrib><creatorcontrib>Hulsey, Robert A.</creatorcontrib><creatorcontrib>Hunter, Gary L.</creatorcontrib><creatorcontrib>Erdal, Zeynep K.</creatorcontrib><creatorcontrib>Pletka, Ryan J.</creatorcontrib><creatorcontrib>George, Hyleme S.</creatorcontrib><creatorcontrib>Wan, Xiu-Feng</creatorcontrib><creatorcontrib>Almasri, Mahmoud</creatorcontrib><title>A microfluidic biosensor architecture for the rapid detection of COVID-19</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml. [Display omitted] •The biosensor was able to detect SARS-COV-2 in clinical sample with a concentration as low as 26 TCID50/ml in 40 min.•The focusing and trapping electrode pairs maximized the number of captured viruses on top of the detection electrode, improving the detection sensitivity.•Detection of SARS-COV-2 virus with high specificity and selectivity.</description><subject>Biosensing Techniques</subject><subject>Biosensor</subject><subject>Clinical Laboratory Techniques - methods</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 Testing</subject><subject>Dielectrophoresis</subject><subject>Humans</subject><subject>Impedance measurement</subject><subject>Microfluidic</subject><subject>Microfluidics</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Polymerase chain reaction (PCR)</subject><subject>SARS-COV-2</subject><subject>Sensitivity and Specificity</subject><subject>Trapping and focusing electrodes</subject><issn>0003-2670</issn><issn>1873-4324</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rGzEQFSWlcdz-gFzKHnNZR18rreghBLdJDAFf2l6FVhrVMuuVK-0a8u8j4yQ0l56GefPmzfAeQpcELwgm4nq7MNYsKKZswThhsv2AZqSVrOaM8jM0wxizmgqJz9FFztvSUoL5J3TOZEM5b8QMrW6rXbAp-n4KLtiqCzHDkGOqTLKbMIIdpwSVL8C4gSqZfXCVgyMe4lBFXy3Xv1ffa6I-o4_e9Bm-vNQ5-nX34-fyoX5c36-Wt4-15Q0d69bRlpuOdY7LliuicOsLooBJ2SrVGCWwE9RJBYoKwb1ntvOmE8o1gI1hc3Rz0t1P3Q6chWFMptf7FHYmPelogn4_GcJG_4kHTTBtiOS8KFy9KKT4d4I86l3IFvreDBCnrMs7XLSYYFao5EQtFuWcwL_dIVgfM9BbXTLQxwz0KYOy8_XfB982Xk0vhG8nAhSbDgGSzjbAYMGFVHzVLob_yD8D4tiWgA</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Muhsin, Sura A.</creator><creator>He, Ying</creator><creator>Al-Amidie, Muthana</creator><creator>Sergovia, Karen</creator><creator>Abdullah, Amjed</creator><creator>Wang, Yang</creator><creator>Alkorjia, Omar</creator><creator>Hulsey, Robert A.</creator><creator>Hunter, Gary L.</creator><creator>Erdal, Zeynep K.</creator><creator>Pletka, Ryan J.</creator><creator>George, Hyleme S.</creator><creator>Wan, Xiu-Feng</creator><creator>Almasri, Mahmoud</creator><general>Elsevier B.V</general><general>Published by Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1571-7309</orcidid><orcidid>https://orcid.org/0000-0002-6527-864X</orcidid></search><sort><creationdate>20230922</creationdate><title>A microfluidic biosensor architecture for the rapid detection of COVID-19</title><author>Muhsin, Sura A. ; He, Ying ; Al-Amidie, Muthana ; Sergovia, Karen ; Abdullah, Amjed ; Wang, Yang ; Alkorjia, Omar ; Hulsey, Robert A. ; Hunter, Gary L. ; Erdal, Zeynep K. ; Pletka, Ryan J. ; George, Hyleme S. ; Wan, Xiu-Feng ; Almasri, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-8d284ab3bd478491908f2849e3778995a960d62d79e92664ff3cbfab69d5e0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>Biosensor</topic><topic>Clinical Laboratory Techniques - methods</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 Testing</topic><topic>Dielectrophoresis</topic><topic>Humans</topic><topic>Impedance measurement</topic><topic>Microfluidic</topic><topic>Microfluidics</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Polymerase chain reaction (PCR)</topic><topic>SARS-COV-2</topic><topic>Sensitivity and Specificity</topic><topic>Trapping and focusing electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhsin, Sura A.</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Al-Amidie, Muthana</creatorcontrib><creatorcontrib>Sergovia, Karen</creatorcontrib><creatorcontrib>Abdullah, Amjed</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Alkorjia, Omar</creatorcontrib><creatorcontrib>Hulsey, Robert A.</creatorcontrib><creatorcontrib>Hunter, Gary L.</creatorcontrib><creatorcontrib>Erdal, Zeynep K.</creatorcontrib><creatorcontrib>Pletka, Ryan J.</creatorcontrib><creatorcontrib>George, Hyleme S.</creatorcontrib><creatorcontrib>Wan, Xiu-Feng</creatorcontrib><creatorcontrib>Almasri, Mahmoud</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhsin, Sura A.</au><au>He, Ying</au><au>Al-Amidie, Muthana</au><au>Sergovia, Karen</au><au>Abdullah, Amjed</au><au>Wang, Yang</au><au>Alkorjia, Omar</au><au>Hulsey, Robert A.</au><au>Hunter, Gary L.</au><au>Erdal, Zeynep K.</au><au>Pletka, Ryan J.</au><au>George, Hyleme S.</au><au>Wan, Xiu-Feng</au><au>Almasri, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic biosensor architecture for the rapid detection of COVID-19</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2023-09-22</date><risdate>2023</risdate><volume>1275</volume><spage>341378</spage><pages>341378-</pages><artnum>341378</artnum><issn>0003-2670</issn><issn>1873-4324</issn><eissn>1873-4324</eissn><abstract>The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml. [Display omitted] •The biosensor was able to detect SARS-COV-2 in clinical sample with a concentration as low as 26 TCID50/ml in 40 min.•The focusing and trapping electrode pairs maximized the number of captured viruses on top of the detection electrode, improving the detection sensitivity.•Detection of SARS-COV-2 virus with high specificity and selectivity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37524456</pmid><doi>10.1016/j.aca.2023.341378</doi><orcidid>https://orcid.org/0000-0002-1571-7309</orcidid><orcidid>https://orcid.org/0000-0002-6527-864X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2023-09, Vol.1275, p.341378, Article 341378
issn 0003-2670
1873-4324
1873-4324
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10251744
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Biosensing Techniques
Biosensor
Clinical Laboratory Techniques - methods
COVID-19 - diagnosis
COVID-19 Testing
Dielectrophoresis
Humans
Impedance measurement
Microfluidic
Microfluidics
Nucleic Acid Amplification Techniques - methods
Polymerase chain reaction (PCR)
SARS-COV-2
Sensitivity and Specificity
Trapping and focusing electrodes
title A microfluidic biosensor architecture for the rapid detection of COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20biosensor%20architecture%20for%20the%20rapid%20detection%20of%20COVID-19&rft.jtitle=Analytica%20chimica%20acta&rft.au=Muhsin,%20Sura%20A.&rft.date=2023-09-22&rft.volume=1275&rft.spage=341378&rft.pages=341378-&rft.artnum=341378&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2023.341378&rft_dat=%3Cproquest_pubme%3E2844680103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844680103&rft_id=info:pmid/37524456&rft_els_id=S0003267023005998&rfr_iscdi=true