Attaining stochastic optimal control over debt ratios in U.S. markets
We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equi...
Gespeichert in:
Veröffentlicht in: | Review of quantitative finance and accounting 2023-10, Vol.61 (3), p.967-993 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 993 |
---|---|
container_issue | 3 |
container_start_page | 967 |
container_title | Review of quantitative finance and accounting |
container_volume | 61 |
creator | Liu, Wei-han |
description | We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time. |
doi_str_mv | 10.1007/s11156-023-01173-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854121433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgffyAq4DrqbmTZJKspJT6gIILFdyFdCZTU6eTmqQF_97oiMWNm3svnMc9HIQugIyBEHEVAYBXBSlpQQBEngdoBDwfAoQ6RCOiSlbIir8co5MYV4RkGecjNJukZFzv-iWOydevJiZXY79Jbm06XPs-Bd9hv7MBN3aRcDDJ-Yhdj5_Hj2O8NuHNpniGjlrTRXv-s0_R883saXpXzB9u76eTeVFzolJheCsJUYIKu6gsYdYa2pTQNFUlawa1lGUOpSolmFAgWFU1GW9bZgylLef0FF0PvpvtYm2b2uZ4ptObkNOGD-2N03-R3r3qpd9pICVTiqrscPnjEPz71sakV34b-hxal5IzKIFRmlnlwKqDjzHY9vcFEP1VuB4K17lw_V24JlmEB5HNtbm4l0iupOCSQqbQgRIz2C9t2H__x_gTsQONtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854121433</pqid></control><display><type>article</type><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><source>Springer Journals</source><source>Business Source Complete</source><creator>Liu, Wei-han</creator><creatorcontrib>Liu, Wei-han</creatorcontrib><description>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-023-01173-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accounting/Auditing ; Consumption ; Corporate Finance ; Debt ; Debt management ; Dynamic programming ; Econometrics ; Economic crisis ; Economics and Finance ; Finance ; GDP ; Government spending ; Gross Domestic Product ; Households ; International finance ; Markets ; Markov analysis ; Operations Research/Decision Theory ; Optimization techniques ; Original Research ; Partial differential equations ; Psychological distress ; Public sector ; Ratios ; Stochastic models</subject><ispartof>Review of quantitative finance and accounting, 2023-10, Vol.61 (3), p.967-993</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</citedby><cites>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</cites><orcidid>0000-0001-9077-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-023-01173-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-023-01173-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Wei-han</creatorcontrib><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</description><subject>Accounting/Auditing</subject><subject>Consumption</subject><subject>Corporate Finance</subject><subject>Debt</subject><subject>Debt management</subject><subject>Dynamic programming</subject><subject>Econometrics</subject><subject>Economic crisis</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>GDP</subject><subject>Government spending</subject><subject>Gross Domestic Product</subject><subject>Households</subject><subject>International finance</subject><subject>Markets</subject><subject>Markov analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization techniques</subject><subject>Original Research</subject><subject>Partial differential equations</subject><subject>Psychological distress</subject><subject>Public sector</subject><subject>Ratios</subject><subject>Stochastic models</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKAzEUDaJgffyAq4DrqbmTZJKspJT6gIILFdyFdCZTU6eTmqQF_97oiMWNm3svnMc9HIQugIyBEHEVAYBXBSlpQQBEngdoBDwfAoQ6RCOiSlbIir8co5MYV4RkGecjNJukZFzv-iWOydevJiZXY79Jbm06XPs-Bd9hv7MBN3aRcDDJ-Yhdj5_Hj2O8NuHNpniGjlrTRXv-s0_R883saXpXzB9u76eTeVFzolJheCsJUYIKu6gsYdYa2pTQNFUlawa1lGUOpSolmFAgWFU1GW9bZgylLef0FF0PvpvtYm2b2uZ4ptObkNOGD-2N03-R3r3qpd9pICVTiqrscPnjEPz71sakV34b-hxal5IzKIFRmlnlwKqDjzHY9vcFEP1VuB4K17lw_V24JlmEB5HNtbm4l0iupOCSQqbQgRIz2C9t2H__x_gTsQONtA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Wei-han</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9077-4322</orcidid></search><sort><creationdate>20231001</creationdate><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><author>Liu, Wei-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accounting/Auditing</topic><topic>Consumption</topic><topic>Corporate Finance</topic><topic>Debt</topic><topic>Debt management</topic><topic>Dynamic programming</topic><topic>Econometrics</topic><topic>Economic crisis</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>GDP</topic><topic>Government spending</topic><topic>Gross Domestic Product</topic><topic>Households</topic><topic>International finance</topic><topic>Markets</topic><topic>Markov analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization techniques</topic><topic>Original Research</topic><topic>Partial differential equations</topic><topic>Psychological distress</topic><topic>Public sector</topic><topic>Ratios</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei-han</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting & Tax Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax & Banking Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei-han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attaining stochastic optimal control over debt ratios in U.S. markets</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>61</volume><issue>3</issue><spage>967</spage><epage>993</epage><pages>967-993</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11156-023-01173-0</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-9077-4322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-865X |
ispartof | Review of quantitative finance and accounting, 2023-10, Vol.61 (3), p.967-993 |
issn | 0924-865X 1573-7179 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249939 |
source | Springer Journals; Business Source Complete |
subjects | Accounting/Auditing Consumption Corporate Finance Debt Debt management Dynamic programming Econometrics Economic crisis Economics and Finance Finance GDP Government spending Gross Domestic Product Households International finance Markets Markov analysis Operations Research/Decision Theory Optimization techniques Original Research Partial differential equations Psychological distress Public sector Ratios Stochastic models |
title | Attaining stochastic optimal control over debt ratios in U.S. markets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attaining%20stochastic%20optimal%20control%20over%20debt%20ratios%20in%20U.S.%20markets&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Liu,%20Wei-han&rft.date=2023-10-01&rft.volume=61&rft.issue=3&rft.spage=967&rft.epage=993&rft.pages=967-993&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-023-01173-0&rft_dat=%3Cproquest_pubme%3E2854121433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854121433&rft_id=info:pmid/&rfr_iscdi=true |