Attaining stochastic optimal control over debt ratios in U.S. markets

We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2023-10, Vol.61 (3), p.967-993
1. Verfasser: Liu, Wei-han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 3
container_start_page 967
container_title Review of quantitative finance and accounting
container_volume 61
creator Liu, Wei-han
description We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.
doi_str_mv 10.1007/s11156-023-01173-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854121433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgffyAq4DrqbmTZJKspJT6gIILFdyFdCZTU6eTmqQF_97oiMWNm3svnMc9HIQugIyBEHEVAYBXBSlpQQBEngdoBDwfAoQ6RCOiSlbIir8co5MYV4RkGecjNJukZFzv-iWOydevJiZXY79Jbm06XPs-Bd9hv7MBN3aRcDDJ-Yhdj5_Hj2O8NuHNpniGjlrTRXv-s0_R883saXpXzB9u76eTeVFzolJheCsJUYIKu6gsYdYa2pTQNFUlawa1lGUOpSolmFAgWFU1GW9bZgylLef0FF0PvpvtYm2b2uZ4ptObkNOGD-2N03-R3r3qpd9pICVTiqrscPnjEPz71sakV34b-hxal5IzKIFRmlnlwKqDjzHY9vcFEP1VuB4K17lw_V24JlmEB5HNtbm4l0iupOCSQqbQgRIz2C9t2H__x_gTsQONtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854121433</pqid></control><display><type>article</type><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><source>Springer Journals</source><source>Business Source Complete</source><creator>Liu, Wei-han</creator><creatorcontrib>Liu, Wei-han</creatorcontrib><description>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-023-01173-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accounting/Auditing ; Consumption ; Corporate Finance ; Debt ; Debt management ; Dynamic programming ; Econometrics ; Economic crisis ; Economics and Finance ; Finance ; GDP ; Government spending ; Gross Domestic Product ; Households ; International finance ; Markets ; Markov analysis ; Operations Research/Decision Theory ; Optimization techniques ; Original Research ; Partial differential equations ; Psychological distress ; Public sector ; Ratios ; Stochastic models</subject><ispartof>Review of quantitative finance and accounting, 2023-10, Vol.61 (3), p.967-993</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</citedby><cites>FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</cites><orcidid>0000-0001-9077-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-023-01173-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-023-01173-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Wei-han</creatorcontrib><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</description><subject>Accounting/Auditing</subject><subject>Consumption</subject><subject>Corporate Finance</subject><subject>Debt</subject><subject>Debt management</subject><subject>Dynamic programming</subject><subject>Econometrics</subject><subject>Economic crisis</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>GDP</subject><subject>Government spending</subject><subject>Gross Domestic Product</subject><subject>Households</subject><subject>International finance</subject><subject>Markets</subject><subject>Markov analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization techniques</subject><subject>Original Research</subject><subject>Partial differential equations</subject><subject>Psychological distress</subject><subject>Public sector</subject><subject>Ratios</subject><subject>Stochastic models</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtKAzEUDaJgffyAq4DrqbmTZJKspJT6gIILFdyFdCZTU6eTmqQF_97oiMWNm3svnMc9HIQugIyBEHEVAYBXBSlpQQBEngdoBDwfAoQ6RCOiSlbIir8co5MYV4RkGecjNJukZFzv-iWOydevJiZXY79Jbm06XPs-Bd9hv7MBN3aRcDDJ-Yhdj5_Hj2O8NuHNpniGjlrTRXv-s0_R883saXpXzB9u76eTeVFzolJheCsJUYIKu6gsYdYa2pTQNFUlawa1lGUOpSolmFAgWFU1GW9bZgylLef0FF0PvpvtYm2b2uZ4ptObkNOGD-2N03-R3r3qpd9pICVTiqrscPnjEPz71sakV34b-hxal5IzKIFRmlnlwKqDjzHY9vcFEP1VuB4K17lw_V24JlmEB5HNtbm4l0iupOCSQqbQgRIz2C9t2H__x_gTsQONtA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liu, Wei-han</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9077-4322</orcidid></search><sort><creationdate>20231001</creationdate><title>Attaining stochastic optimal control over debt ratios in U.S. markets</title><author>Liu, Wei-han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a5f8009737eb6e04eea3d21dd668c41c882055969747917466d3d2ff4aa33f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accounting/Auditing</topic><topic>Consumption</topic><topic>Corporate Finance</topic><topic>Debt</topic><topic>Debt management</topic><topic>Dynamic programming</topic><topic>Econometrics</topic><topic>Economic crisis</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>GDP</topic><topic>Government spending</topic><topic>Gross Domestic Product</topic><topic>Households</topic><topic>International finance</topic><topic>Markets</topic><topic>Markov analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization techniques</topic><topic>Original Research</topic><topic>Partial differential equations</topic><topic>Psychological distress</topic><topic>Public sector</topic><topic>Ratios</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei-han</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei-han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attaining stochastic optimal control over debt ratios in U.S. markets</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>61</volume><issue>3</issue><spage>967</spage><epage>993</epage><pages>967-993</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>We propose a refined dynamic programming model based on a hidden Markov chain formulation and a nonlinear filtering technique to calculate the optimal debt ratio for public and private sectors for different scenarios. We then conduct the empirical analysis of the U.S. markets in real estate and equities during 1991.Q1 and 2020.Q1, comparing them with the theoretical results. It indicates that U.S. households and governments spent more than they can afford. While households reduced their debt ratio during times of economic distress, the public sector hiked its debt ratio to stimulate the economy. The policy effect took a long time to accumulate, and the outcome was lower than expected to revitalize the economy in time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11156-023-01173-0</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-9077-4322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-865X
ispartof Review of quantitative finance and accounting, 2023-10, Vol.61 (3), p.967-993
issn 0924-865X
1573-7179
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249939
source Springer Journals; Business Source Complete
subjects Accounting/Auditing
Consumption
Corporate Finance
Debt
Debt management
Dynamic programming
Econometrics
Economic crisis
Economics and Finance
Finance
GDP
Government spending
Gross Domestic Product
Households
International finance
Markets
Markov analysis
Operations Research/Decision Theory
Optimization techniques
Original Research
Partial differential equations
Psychological distress
Public sector
Ratios
Stochastic models
title Attaining stochastic optimal control over debt ratios in U.S. markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attaining%20stochastic%20optimal%20control%20over%20debt%20ratios%20in%20U.S.%20markets&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Liu,%20Wei-han&rft.date=2023-10-01&rft.volume=61&rft.issue=3&rft.spage=967&rft.epage=993&rft.pages=967-993&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-023-01173-0&rft_dat=%3Cproquest_pubme%3E2854121433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854121433&rft_id=info:pmid/&rfr_iscdi=true