Sestrins induce natural killer function in senescent-like CD8+ T cells

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8 + T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27 − CD28 − CD8 + T cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology 2020-06, Vol.21 (6), p.684-694
Hauptverfasser: Pereira, Branca I., De Maeyer, Roel P. H., Covre, Luciana P., Nehar-Belaid, Djamel, Lanna, Alessio, Ward, Sophie, Marches, Radu, Chambers, Emma S., Gomes, Daniel C. O., Riddell, Natalie E., Maini, Mala K., Teixeira, Vitor H., Janes, Samuel M., Gilroy, Derek W., Larbi, Anis, Mabbott, Neil A., Ucar, Duygu, Kuchel, George A., Henson, Sian M., Strid, Jessica, Lee, Jun H., Banchereau, Jacques, Akbar, Arne N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 6
container_start_page 684
container_title Nature immunology
container_volume 21
creator Pereira, Branca I.
De Maeyer, Roel P. H.
Covre, Luciana P.
Nehar-Belaid, Djamel
Lanna, Alessio
Ward, Sophie
Marches, Radu
Chambers, Emma S.
Gomes, Daniel C. O.
Riddell, Natalie E.
Maini, Mala K.
Teixeira, Vitor H.
Janes, Samuel M.
Gilroy, Derek W.
Larbi, Anis
Mabbott, Neil A.
Ucar, Duygu
Kuchel, George A.
Henson, Sian M.
Strid, Jessica
Lee, Jun H.
Banchereau, Jacques
Akbar, Arne N.
description Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8 + T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27 − CD28 − CD8 + T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D–DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27 − CD28 − CD8 + T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27 − CD28 − CD8 + T cells to acquire a broad-spectrum, innate-like killing activity. Akbar and colleagues show that sestrins induce the reprogramming of non-proliferative, senescent-like CD27 – CD28 – CD8 + T cells to acquire an innate-like killing activity modulated by the NK receptor NKG2D and the adaptor molecule DAP12.
doi_str_mv 10.1038/s41590-020-0643-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406924463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-93790c0eab5678f57eadb44bf58d2c13a3035520f945a8b92ca8ba284d4b7d193</originalsourceid><addsrcrecordid>eNp9kUlLxTAUhYMoDk9_gBspuBGkejM1zUrkOYLgQl2HNE012pdq0gr-e1OePgfQRQa43z25JwehbQwHGGh5GBnmEnIgaRWM5nQJrWNOZE4kLpYXdyjX0EaMjwCYiYKtojVKCMUU8Do6u7GxD87HzPl6MDbzuh-CbrMn17Y2ZM3gTe86n8pZtN5GY32ft-7JZtOTcj-7zYxt27iJVhrdRrv1cU7Q3dnp7fQiv7o-v5weX-WGSdnnkgoJBqyueCHKhgur64qxquFlTQymmgLlnEAjGddlJYlJuyYlq1klaizpBB3NdZ-HambrcZg0rHoObqbDm-q0Uz8r3j2o--5VYSBMsvRJE7T3oRC6lyGZVzMXRw_a226IitCSE8ELIhK6-wt97Ibgkz9FmOCAMRfwPwWFJIwVNFF4TpnQxRhss5gZgxrDVPMwVQpTjWGqsWfnu9lFx2d6CSBzIKaSv7fh6-m_Vd8BMuWoNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406924463</pqid></control><display><type>article</type><title>Sestrins induce natural killer function in senescent-like CD8+ T cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pereira, Branca I. ; De Maeyer, Roel P. H. ; Covre, Luciana P. ; Nehar-Belaid, Djamel ; Lanna, Alessio ; Ward, Sophie ; Marches, Radu ; Chambers, Emma S. ; Gomes, Daniel C. O. ; Riddell, Natalie E. ; Maini, Mala K. ; Teixeira, Vitor H. ; Janes, Samuel M. ; Gilroy, Derek W. ; Larbi, Anis ; Mabbott, Neil A. ; Ucar, Duygu ; Kuchel, George A. ; Henson, Sian M. ; Strid, Jessica ; Lee, Jun H. ; Banchereau, Jacques ; Akbar, Arne N.</creator><creatorcontrib>Pereira, Branca I. ; De Maeyer, Roel P. H. ; Covre, Luciana P. ; Nehar-Belaid, Djamel ; Lanna, Alessio ; Ward, Sophie ; Marches, Radu ; Chambers, Emma S. ; Gomes, Daniel C. O. ; Riddell, Natalie E. ; Maini, Mala K. ; Teixeira, Vitor H. ; Janes, Samuel M. ; Gilroy, Derek W. ; Larbi, Anis ; Mabbott, Neil A. ; Ucar, Duygu ; Kuchel, George A. ; Henson, Sian M. ; Strid, Jessica ; Lee, Jun H. ; Banchereau, Jacques ; Akbar, Arne N.</creatorcontrib><description>Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8 + T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27 − CD28 − CD8 + T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D–DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27 − CD28 − CD8 + T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27 − CD28 − CD8 + T cells to acquire a broad-spectrum, innate-like killing activity. Akbar and colleagues show that sestrins induce the reprogramming of non-proliferative, senescent-like CD27 – CD28 – CD8 + T cells to acquire an innate-like killing activity modulated by the NK receptor NKG2D and the adaptor molecule DAP12.</description><identifier>ISSN: 1529-2908</identifier><identifier>EISSN: 1529-2916</identifier><identifier>DOI: 10.1038/s41590-020-0643-3</identifier><identifier>PMID: 32231301</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/1619/554/1834 ; 631/250/2152/1566 ; 631/250/580/1884 ; Adaptor Proteins, Signal Transducing - metabolism ; Aging ; Biomedical and Life Sciences ; Biomedicine ; CD27 antigen ; CD28 antigen ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell differentiation ; Cellular Senescence - immunology ; Cytometry ; Cytotoxicity ; Cytotoxicity, Immunologic ; DAP12 protein ; Gene Expression Profiling ; Humans ; Immune system ; Immunology ; Immunoprecipitation ; Infectious Diseases ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Lymphocytes ; Lymphocytes T ; Membrane Proteins - metabolism ; Natural killer cells ; NK Cell Lectin-Like Receptor Subfamily K - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Receptors, Antigen, T-Cell - metabolism ; Receptors, Natural Killer Cell - metabolism ; Senescence ; Signal Transduction ; T cell receptors ; Yellow Fever - genetics ; Yellow Fever - immunology ; Yellow Fever - metabolism ; Yellow Fever - virology ; Yellow fever virus - immunology</subject><ispartof>Nature immunology, 2020-06, Vol.21 (6), p.684-694</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-93790c0eab5678f57eadb44bf58d2c13a3035520f945a8b92ca8ba284d4b7d193</citedby><cites>FETCH-LOGICAL-c499t-93790c0eab5678f57eadb44bf58d2c13a3035520f945a8b92ca8ba284d4b7d193</cites><orcidid>0000-0001-8387-7040 ; 0000-0001-5877-0137 ; 0000-0001-6002-5021 ; 0000-0003-3535-7221 ; 0000-0002-2200-6011 ; 0000-0002-9772-3066 ; 0000-0003-4041-0867 ; 0000-0003-0090-861X ; 0000-0003-3476-0844 ; 0000-0003-0990-8835 ; 0000-0001-6384-1462 ; 0000-0001-7395-1796 ; 0000-0002-3763-9380 ; 0000-0002-6634-5939 ; 0000-0003-3690-2201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41590-020-0643-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41590-020-0643-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, Branca I.</creatorcontrib><creatorcontrib>De Maeyer, Roel P. H.</creatorcontrib><creatorcontrib>Covre, Luciana P.</creatorcontrib><creatorcontrib>Nehar-Belaid, Djamel</creatorcontrib><creatorcontrib>Lanna, Alessio</creatorcontrib><creatorcontrib>Ward, Sophie</creatorcontrib><creatorcontrib>Marches, Radu</creatorcontrib><creatorcontrib>Chambers, Emma S.</creatorcontrib><creatorcontrib>Gomes, Daniel C. O.</creatorcontrib><creatorcontrib>Riddell, Natalie E.</creatorcontrib><creatorcontrib>Maini, Mala K.</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Janes, Samuel M.</creatorcontrib><creatorcontrib>Gilroy, Derek W.</creatorcontrib><creatorcontrib>Larbi, Anis</creatorcontrib><creatorcontrib>Mabbott, Neil A.</creatorcontrib><creatorcontrib>Ucar, Duygu</creatorcontrib><creatorcontrib>Kuchel, George A.</creatorcontrib><creatorcontrib>Henson, Sian M.</creatorcontrib><creatorcontrib>Strid, Jessica</creatorcontrib><creatorcontrib>Lee, Jun H.</creatorcontrib><creatorcontrib>Banchereau, Jacques</creatorcontrib><creatorcontrib>Akbar, Arne N.</creatorcontrib><title>Sestrins induce natural killer function in senescent-like CD8+ T cells</title><title>Nature immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8 + T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27 − CD28 − CD8 + T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D–DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27 − CD28 − CD8 + T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27 − CD28 − CD8 + T cells to acquire a broad-spectrum, innate-like killing activity. Akbar and colleagues show that sestrins induce the reprogramming of non-proliferative, senescent-like CD27 – CD28 – CD8 + T cells to acquire an innate-like killing activity modulated by the NK receptor NKG2D and the adaptor molecule DAP12.</description><subject>631/250/1619/554/1834</subject><subject>631/250/2152/1566</subject><subject>631/250/580/1884</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Aging</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>CD27 antigen</subject><subject>CD28 antigen</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell differentiation</subject><subject>Cellular Senescence - immunology</subject><subject>Cytometry</subject><subject>Cytotoxicity</subject><subject>Cytotoxicity, Immunologic</subject><subject>DAP12 protein</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>Infectious Diseases</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane Proteins - metabolism</subject><subject>Natural killer cells</subject><subject>NK Cell Lectin-Like Receptor Subfamily K - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>Receptors, Natural Killer Cell - metabolism</subject><subject>Senescence</subject><subject>Signal Transduction</subject><subject>T cell receptors</subject><subject>Yellow Fever - genetics</subject><subject>Yellow Fever - immunology</subject><subject>Yellow Fever - metabolism</subject><subject>Yellow Fever - virology</subject><subject>Yellow fever virus - immunology</subject><issn>1529-2908</issn><issn>1529-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlLxTAUhYMoDk9_gBspuBGkejM1zUrkOYLgQl2HNE012pdq0gr-e1OePgfQRQa43z25JwehbQwHGGh5GBnmEnIgaRWM5nQJrWNOZE4kLpYXdyjX0EaMjwCYiYKtojVKCMUU8Do6u7GxD87HzPl6MDbzuh-CbrMn17Y2ZM3gTe86n8pZtN5GY32ft-7JZtOTcj-7zYxt27iJVhrdRrv1cU7Q3dnp7fQiv7o-v5weX-WGSdnnkgoJBqyueCHKhgur64qxquFlTQymmgLlnEAjGddlJYlJuyYlq1klaizpBB3NdZ-HambrcZg0rHoObqbDm-q0Uz8r3j2o--5VYSBMsvRJE7T3oRC6lyGZVzMXRw_a226IitCSE8ELIhK6-wt97Ibgkz9FmOCAMRfwPwWFJIwVNFF4TpnQxRhss5gZgxrDVPMwVQpTjWGqsWfnu9lFx2d6CSBzIKaSv7fh6-m_Vd8BMuWoNQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pereira, Branca I.</creator><creator>De Maeyer, Roel P. H.</creator><creator>Covre, Luciana P.</creator><creator>Nehar-Belaid, Djamel</creator><creator>Lanna, Alessio</creator><creator>Ward, Sophie</creator><creator>Marches, Radu</creator><creator>Chambers, Emma S.</creator><creator>Gomes, Daniel C. O.</creator><creator>Riddell, Natalie E.</creator><creator>Maini, Mala K.</creator><creator>Teixeira, Vitor H.</creator><creator>Janes, Samuel M.</creator><creator>Gilroy, Derek W.</creator><creator>Larbi, Anis</creator><creator>Mabbott, Neil A.</creator><creator>Ucar, Duygu</creator><creator>Kuchel, George A.</creator><creator>Henson, Sian M.</creator><creator>Strid, Jessica</creator><creator>Lee, Jun H.</creator><creator>Banchereau, Jacques</creator><creator>Akbar, Arne N.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8387-7040</orcidid><orcidid>https://orcid.org/0000-0001-5877-0137</orcidid><orcidid>https://orcid.org/0000-0001-6002-5021</orcidid><orcidid>https://orcid.org/0000-0003-3535-7221</orcidid><orcidid>https://orcid.org/0000-0002-2200-6011</orcidid><orcidid>https://orcid.org/0000-0002-9772-3066</orcidid><orcidid>https://orcid.org/0000-0003-4041-0867</orcidid><orcidid>https://orcid.org/0000-0003-0090-861X</orcidid><orcidid>https://orcid.org/0000-0003-3476-0844</orcidid><orcidid>https://orcid.org/0000-0003-0990-8835</orcidid><orcidid>https://orcid.org/0000-0001-6384-1462</orcidid><orcidid>https://orcid.org/0000-0001-7395-1796</orcidid><orcidid>https://orcid.org/0000-0002-3763-9380</orcidid><orcidid>https://orcid.org/0000-0002-6634-5939</orcidid><orcidid>https://orcid.org/0000-0003-3690-2201</orcidid></search><sort><creationdate>20200601</creationdate><title>Sestrins induce natural killer function in senescent-like CD8+ T cells</title><author>Pereira, Branca I. ; De Maeyer, Roel P. H. ; Covre, Luciana P. ; Nehar-Belaid, Djamel ; Lanna, Alessio ; Ward, Sophie ; Marches, Radu ; Chambers, Emma S. ; Gomes, Daniel C. O. ; Riddell, Natalie E. ; Maini, Mala K. ; Teixeira, Vitor H. ; Janes, Samuel M. ; Gilroy, Derek W. ; Larbi, Anis ; Mabbott, Neil A. ; Ucar, Duygu ; Kuchel, George A. ; Henson, Sian M. ; Strid, Jessica ; Lee, Jun H. ; Banchereau, Jacques ; Akbar, Arne N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-93790c0eab5678f57eadb44bf58d2c13a3035520f945a8b92ca8ba284d4b7d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/250/1619/554/1834</topic><topic>631/250/2152/1566</topic><topic>631/250/580/1884</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Aging</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>CD27 antigen</topic><topic>CD28 antigen</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell differentiation</topic><topic>Cellular Senescence - immunology</topic><topic>Cytometry</topic><topic>Cytotoxicity</topic><topic>Cytotoxicity, Immunologic</topic><topic>DAP12 protein</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>Infectious Diseases</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane Proteins - metabolism</topic><topic>Natural killer cells</topic><topic>NK Cell Lectin-Like Receptor Subfamily K - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>Receptors, Natural Killer Cell - metabolism</topic><topic>Senescence</topic><topic>Signal Transduction</topic><topic>T cell receptors</topic><topic>Yellow Fever - genetics</topic><topic>Yellow Fever - immunology</topic><topic>Yellow Fever - metabolism</topic><topic>Yellow Fever - virology</topic><topic>Yellow fever virus - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Branca I.</creatorcontrib><creatorcontrib>De Maeyer, Roel P. H.</creatorcontrib><creatorcontrib>Covre, Luciana P.</creatorcontrib><creatorcontrib>Nehar-Belaid, Djamel</creatorcontrib><creatorcontrib>Lanna, Alessio</creatorcontrib><creatorcontrib>Ward, Sophie</creatorcontrib><creatorcontrib>Marches, Radu</creatorcontrib><creatorcontrib>Chambers, Emma S.</creatorcontrib><creatorcontrib>Gomes, Daniel C. O.</creatorcontrib><creatorcontrib>Riddell, Natalie E.</creatorcontrib><creatorcontrib>Maini, Mala K.</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Janes, Samuel M.</creatorcontrib><creatorcontrib>Gilroy, Derek W.</creatorcontrib><creatorcontrib>Larbi, Anis</creatorcontrib><creatorcontrib>Mabbott, Neil A.</creatorcontrib><creatorcontrib>Ucar, Duygu</creatorcontrib><creatorcontrib>Kuchel, George A.</creatorcontrib><creatorcontrib>Henson, Sian M.</creatorcontrib><creatorcontrib>Strid, Jessica</creatorcontrib><creatorcontrib>Lee, Jun H.</creatorcontrib><creatorcontrib>Banchereau, Jacques</creatorcontrib><creatorcontrib>Akbar, Arne N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Branca I.</au><au>De Maeyer, Roel P. H.</au><au>Covre, Luciana P.</au><au>Nehar-Belaid, Djamel</au><au>Lanna, Alessio</au><au>Ward, Sophie</au><au>Marches, Radu</au><au>Chambers, Emma S.</au><au>Gomes, Daniel C. O.</au><au>Riddell, Natalie E.</au><au>Maini, Mala K.</au><au>Teixeira, Vitor H.</au><au>Janes, Samuel M.</au><au>Gilroy, Derek W.</au><au>Larbi, Anis</au><au>Mabbott, Neil A.</au><au>Ucar, Duygu</au><au>Kuchel, George A.</au><au>Henson, Sian M.</au><au>Strid, Jessica</au><au>Lee, Jun H.</au><au>Banchereau, Jacques</au><au>Akbar, Arne N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sestrins induce natural killer function in senescent-like CD8+ T cells</atitle><jtitle>Nature immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>21</volume><issue>6</issue><spage>684</spage><epage>694</epage><pages>684-694</pages><issn>1529-2908</issn><eissn>1529-2916</eissn><abstract>Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8 + T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27 − CD28 − CD8 + T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D–DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27 − CD28 − CD8 + T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27 − CD28 − CD8 + T cells to acquire a broad-spectrum, innate-like killing activity. Akbar and colleagues show that sestrins induce the reprogramming of non-proliferative, senescent-like CD27 – CD28 – CD8 + T cells to acquire an innate-like killing activity modulated by the NK receptor NKG2D and the adaptor molecule DAP12.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32231301</pmid><doi>10.1038/s41590-020-0643-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8387-7040</orcidid><orcidid>https://orcid.org/0000-0001-5877-0137</orcidid><orcidid>https://orcid.org/0000-0001-6002-5021</orcidid><orcidid>https://orcid.org/0000-0003-3535-7221</orcidid><orcidid>https://orcid.org/0000-0002-2200-6011</orcidid><orcidid>https://orcid.org/0000-0002-9772-3066</orcidid><orcidid>https://orcid.org/0000-0003-4041-0867</orcidid><orcidid>https://orcid.org/0000-0003-0090-861X</orcidid><orcidid>https://orcid.org/0000-0003-3476-0844</orcidid><orcidid>https://orcid.org/0000-0003-0990-8835</orcidid><orcidid>https://orcid.org/0000-0001-6384-1462</orcidid><orcidid>https://orcid.org/0000-0001-7395-1796</orcidid><orcidid>https://orcid.org/0000-0002-3763-9380</orcidid><orcidid>https://orcid.org/0000-0002-6634-5939</orcidid><orcidid>https://orcid.org/0000-0003-3690-2201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-2908
ispartof Nature immunology, 2020-06, Vol.21 (6), p.684-694
issn 1529-2908
1529-2916
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10249464
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/250/1619/554/1834
631/250/2152/1566
631/250/580/1884
Adaptor Proteins, Signal Transducing - metabolism
Aging
Biomedical and Life Sciences
Biomedicine
CD27 antigen
CD28 antigen
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell differentiation
Cellular Senescence - immunology
Cytometry
Cytotoxicity
Cytotoxicity, Immunologic
DAP12 protein
Gene Expression Profiling
Humans
Immune system
Immunology
Immunoprecipitation
Infectious Diseases
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Lymphocytes
Lymphocytes T
Membrane Proteins - metabolism
Natural killer cells
NK Cell Lectin-Like Receptor Subfamily K - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Receptors, Antigen, T-Cell - metabolism
Receptors, Natural Killer Cell - metabolism
Senescence
Signal Transduction
T cell receptors
Yellow Fever - genetics
Yellow Fever - immunology
Yellow Fever - metabolism
Yellow Fever - virology
Yellow fever virus - immunology
title Sestrins induce natural killer function in senescent-like CD8+ T cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sestrins%20induce%20natural%20killer%20function%20in%20senescent-like%20CD8+%20T%20cells&rft.jtitle=Nature%20immunology&rft.au=Pereira,%20Branca%20I.&rft.date=2020-06-01&rft.volume=21&rft.issue=6&rft.spage=684&rft.epage=694&rft.pages=684-694&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/s41590-020-0643-3&rft_dat=%3Cproquest_pubme%3E2406924463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406924463&rft_id=info:pmid/32231301&rfr_iscdi=true