Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis

Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-06, Vol.299 (6), p.104752, Article 104752
Hauptverfasser: Barlow, Alexandra N., Manu, M.S., Saladi, Shyam M., Tarr, Paul T., Yadav, Yashpal, Thinn, Aye M.M., Zhu, Yun, Laganowsky, Arthur D., Clemons, William M., Ramasamy, Sureshkumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 104752
container_title The Journal of biological chemistry
container_volume 299
creator Barlow, Alexandra N.
Manu, M.S.
Saladi, Shyam M.
Tarr, Paul T.
Yadav, Yashpal
Thinn, Aye M.M.
Zhu, Yun
Laganowsky, Arthur D.
Clemons, William M.
Ramasamy, Sureshkumar
description Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a “closed” conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.
doi_str_mv 10.1016/j.jbc.2023.104752
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10248533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823017805</els_id><sourcerecordid>2806995047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3192-32321f2c41ddfec1df3ecf5c06c1a468b95c9b0187bbc994691f4994e73ae8533</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfCD-CCfOSSxWMn2VgcEKqgrVSpB0DiZjmTSeNVNl5sZ6v--zpsqeBSX0bWe_PZeo-xdyDWIKD-uF1vW1xLIVW-l5tKvmArEI0qVAW_XrKVEBIKLavmlL2OcSvyKTW8YqdqA1lrmhVrv6cwY5oDRe57fkFJdTzQgezILe9cTG7CxG3AwSX6Y-Q2Ro_OJur4nUsDTwNx2lG4pQlpoewHn3y8n7IQXXzDTno7Rnr7OM_Yz29ff5xfFtc3F1fnX64LVKBloaSS0Essoet6Quh6RdhXKGoEW9ZNqyvUrYBm07aodVlr6Ms8aaMsNZVSZ-zzkbuf2x11SFMKdjT74HY23Btvnflfmdxgbv3BgJDlAsiED4-E4H_PFJPZuYg0jnYiP0cjG1FrXeWosxWOVgw-xkD90zsgzFKO2ZpcjlnKMcdy8s77fz_4tPG3jWz4dDRQjungKJiIbgm1cyFnbzrvnsE_AHzeodk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806995047</pqid></control><display><type>article</type><title>Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Barlow, Alexandra N. ; Manu, M.S. ; Saladi, Shyam M. ; Tarr, Paul T. ; Yadav, Yashpal ; Thinn, Aye M.M. ; Zhu, Yun ; Laganowsky, Arthur D. ; Clemons, William M. ; Ramasamy, Sureshkumar</creator><creatorcontrib>Barlow, Alexandra N. ; Manu, M.S. ; Saladi, Shyam M. ; Tarr, Paul T. ; Yadav, Yashpal ; Thinn, Aye M.M. ; Zhu, Yun ; Laganowsky, Arthur D. ; Clemons, William M. ; Ramasamy, Sureshkumar</creatorcontrib><description>Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a “closed” conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.104752</identifier><identifier>PMID: 37100288</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; cyanobacteria ; Embryophyta ; Endoplasmic Reticulum - metabolism ; GET pathway ; Get3 ; Guanine Nucleotide Exchange Factors - metabolism ; NTPase ; Photosynthesis ; plant ; protein structure ; protein targeting ; structural biology ; tail-anchored protein</subject><ispartof>The Journal of biological chemistry, 2023-06, Vol.299 (6), p.104752, Article 104752</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3192-32321f2c41ddfec1df3ecf5c06c1a468b95c9b0187bbc994691f4994e73ae8533</cites><orcidid>0000-0001-6515-2396 ; 0000-0003-2977-3683 ; 0000-0002-0021-889X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37100288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlow, Alexandra N.</creatorcontrib><creatorcontrib>Manu, M.S.</creatorcontrib><creatorcontrib>Saladi, Shyam M.</creatorcontrib><creatorcontrib>Tarr, Paul T.</creatorcontrib><creatorcontrib>Yadav, Yashpal</creatorcontrib><creatorcontrib>Thinn, Aye M.M.</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Laganowsky, Arthur D.</creatorcontrib><creatorcontrib>Clemons, William M.</creatorcontrib><creatorcontrib>Ramasamy, Sureshkumar</creatorcontrib><title>Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a “closed” conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>cyanobacteria</subject><subject>Embryophyta</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>GET pathway</subject><subject>Get3</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>NTPase</subject><subject>Photosynthesis</subject><subject>plant</subject><subject>protein structure</subject><subject>protein targeting</subject><subject>structural biology</subject><subject>tail-anchored protein</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS1ERZfCD-CCfOSSxWMn2VgcEKqgrVSpB0DiZjmTSeNVNl5sZ6v--zpsqeBSX0bWe_PZeo-xdyDWIKD-uF1vW1xLIVW-l5tKvmArEI0qVAW_XrKVEBIKLavmlL2OcSvyKTW8YqdqA1lrmhVrv6cwY5oDRe57fkFJdTzQgezILe9cTG7CxG3AwSX6Y-Q2Ro_OJur4nUsDTwNx2lG4pQlpoewHn3y8n7IQXXzDTno7Rnr7OM_Yz29ff5xfFtc3F1fnX64LVKBloaSS0Essoet6Quh6RdhXKGoEW9ZNqyvUrYBm07aodVlr6Ms8aaMsNZVSZ-zzkbuf2x11SFMKdjT74HY23Btvnflfmdxgbv3BgJDlAsiED4-E4H_PFJPZuYg0jnYiP0cjG1FrXeWosxWOVgw-xkD90zsgzFKO2ZpcjlnKMcdy8s77fz_4tPG3jWz4dDRQjungKJiIbgm1cyFnbzrvnsE_AHzeodk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Barlow, Alexandra N.</creator><creator>Manu, M.S.</creator><creator>Saladi, Shyam M.</creator><creator>Tarr, Paul T.</creator><creator>Yadav, Yashpal</creator><creator>Thinn, Aye M.M.</creator><creator>Zhu, Yun</creator><creator>Laganowsky, Arthur D.</creator><creator>Clemons, William M.</creator><creator>Ramasamy, Sureshkumar</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6515-2396</orcidid><orcidid>https://orcid.org/0000-0003-2977-3683</orcidid><orcidid>https://orcid.org/0000-0002-0021-889X</orcidid></search><sort><creationdate>20230601</creationdate><title>Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis</title><author>Barlow, Alexandra N. ; Manu, M.S. ; Saladi, Shyam M. ; Tarr, Paul T. ; Yadav, Yashpal ; Thinn, Aye M.M. ; Zhu, Yun ; Laganowsky, Arthur D. ; Clemons, William M. ; Ramasamy, Sureshkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3192-32321f2c41ddfec1df3ecf5c06c1a468b95c9b0187bbc994691f4994e73ae8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>cyanobacteria</topic><topic>Embryophyta</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>GET pathway</topic><topic>Get3</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>NTPase</topic><topic>Photosynthesis</topic><topic>plant</topic><topic>protein structure</topic><topic>protein targeting</topic><topic>structural biology</topic><topic>tail-anchored protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Alexandra N.</creatorcontrib><creatorcontrib>Manu, M.S.</creatorcontrib><creatorcontrib>Saladi, Shyam M.</creatorcontrib><creatorcontrib>Tarr, Paul T.</creatorcontrib><creatorcontrib>Yadav, Yashpal</creatorcontrib><creatorcontrib>Thinn, Aye M.M.</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Laganowsky, Arthur D.</creatorcontrib><creatorcontrib>Clemons, William M.</creatorcontrib><creatorcontrib>Ramasamy, Sureshkumar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Alexandra N.</au><au>Manu, M.S.</au><au>Saladi, Shyam M.</au><au>Tarr, Paul T.</au><au>Yadav, Yashpal</au><au>Thinn, Aye M.M.</au><au>Zhu, Yun</au><au>Laganowsky, Arthur D.</au><au>Clemons, William M.</au><au>Ramasamy, Sureshkumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>299</volume><issue>6</issue><spage>104752</spage><pages>104752-</pages><artnum>104752</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a “closed” conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37100288</pmid><doi>10.1016/j.jbc.2023.104752</doi><orcidid>https://orcid.org/0000-0001-6515-2396</orcidid><orcidid>https://orcid.org/0000-0003-2977-3683</orcidid><orcidid>https://orcid.org/0000-0002-0021-889X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-06, Vol.299 (6), p.104752, Article 104752
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10248533
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphatases - metabolism
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
cyanobacteria
Embryophyta
Endoplasmic Reticulum - metabolism
GET pathway
Get3
Guanine Nucleotide Exchange Factors - metabolism
NTPase
Photosynthesis
plant
protein structure
protein targeting
structural biology
tail-anchored protein
title Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20Get3d%20reveal%20a%20distinct%20architecture%20associated%20with%20the%20emergence%20of%20photosynthesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Barlow,%20Alexandra%20N.&rft.date=2023-06-01&rft.volume=299&rft.issue=6&rft.spage=104752&rft.pages=104752-&rft.artnum=104752&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.104752&rft_dat=%3Cproquest_pubme%3E2806995047%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806995047&rft_id=info:pmid/37100288&rft_els_id=S0021925823017805&rfr_iscdi=true