Interchange reconnection as the source of the fast solar wind within coronal holes

The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-06, Vol.618 (7964), p.252-256
Hauptverfasser: Bale, S. D., Drake, J. F., McManus, M. D., Desai, M. I., Badman, S. T., Larson, D. E., Swisdak, M., Horbury, T. S., Raouafi, N. E., Phan, T., Velli, M., McComas, D. J., Cohen, C. M. S., Mitchell, D., Panasenco, O., Kasper, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 7964
container_start_page 252
container_title Nature (London)
container_volume 618
creator Bale, S. D.
Drake, J. F.
McManus, M. D.
Desai, M. I.
Badman, S. T.
Larson, D. E.
Swisdak, M.
Horbury, T. S.
Raouafi, N. E.
Phan, T.
Velli, M.
McComas, D. J.
Cohen, C. M. S.
Mitchell, D.
Panasenco, O.
Kasper, J. C.
description The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1 , 2 and interchange reconnection 3 – 5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7 , 8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. Measurements of fast solar wind streams from the Parker Solar Probe spacecraft provide strong evidence for the interchange reconnection mechanism being responsible for accelerating the fast solar wind.
doi_str_mv 10.1038/s41586-023-05955-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10247371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823991984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ce86011baa26789045ee9136b4a41bc6c8e233cb3431b3c99d29856162c062733</originalsourceid><addsrcrecordid>eNp9kU9PHCEYh0mjqVvbL9CDmcSLl6nAy99TY0xtTUxMjJ4Jw77rjJkFC7Oafvuyu9aqBy8QeB9-8PIQ8pXRb4yCOS6CSaNayqGl0krZwgcyY0KrViijd8iMUm5aakDtkU-l3FFKJdPiI9kDzY1SwszI1XmcMIfex1tsMoYUI4ZpSLHxpZl6bEpa5YBNWmxWC1-mujX63DwOcV6HqR9iE1JO0Y9Nn0Ysn8nuwo8FvzzN--Tm7Mf16a_24vLn-enJRRuEllMb0CjKWOc9V9pYKiSiZaA64QXrggoGOUDoQADrIFg759ZIxRQPVHENsE--b3PvV90S5wHjlP3o7vOw9PmPS35wrytx6N1tenCMcqFBs5pw9JSQ0-8VlskthxJwHH3EtCqOGw7WMmtERQ_foHf1Y2rPG0oJAEnXgXxLhZxKybh4fg2jbu3MbZ256sxtnLl1Hwcv-3g-8k9SBWALlFqqnvL_u9-J_QuUl6HJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826433501</pqid></control><display><type>article</type><title>Interchange reconnection as the source of the fast solar wind within coronal holes</title><source>SpringerLink Journals</source><source>Nature</source><creator>Bale, S. D. ; Drake, J. F. ; McManus, M. D. ; Desai, M. I. ; Badman, S. T. ; Larson, D. E. ; Swisdak, M. ; Horbury, T. S. ; Raouafi, N. E. ; Phan, T. ; Velli, M. ; McComas, D. J. ; Cohen, C. M. S. ; Mitchell, D. ; Panasenco, O. ; Kasper, J. C.</creator><creatorcontrib>Bale, S. D. ; Drake, J. F. ; McManus, M. D. ; Desai, M. I. ; Badman, S. T. ; Larson, D. E. ; Swisdak, M. ; Horbury, T. S. ; Raouafi, N. E. ; Phan, T. ; Velli, M. ; McComas, D. J. ; Cohen, C. M. S. ; Mitchell, D. ; Panasenco, O. ; Kasper, J. C.</creatorcontrib><description>The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1 , 2 and interchange reconnection 3 – 5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7 , 8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. Measurements of fast solar wind streams from the Parker Solar Probe spacecraft provide strong evidence for the interchange reconnection mechanism being responsible for accelerating the fast solar wind.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05955-3</identifier><identifier>PMID: 37286648</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/4124 ; 639/33/525/870 ; Convection ; Convection cells ; Corona ; Coronal holes ; Coronal magnetic fields ; Energy ; Energy release rate ; Energy sources ; Heliosphere ; Humanities and Social Sciences ; Magnetic fields ; Magnetic reconnection ; Mathematical models ; multidisciplinary ; Observatories ; Plasma pressure ; Science ; Science (multidisciplinary) ; Simulation ; Solar corona ; Solar magnetic field ; Solar physics ; Solar probes ; Solar surface ; Solar wind ; Spectra ; Streams ; Sun ; Velocity ; Wind measurement</subject><ispartof>Nature (London), 2023-06, Vol.618 (7964), p.252-256</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 8, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ce86011baa26789045ee9136b4a41bc6c8e233cb3431b3c99d29856162c062733</citedby><cites>FETCH-LOGICAL-c475t-ce86011baa26789045ee9136b4a41bc6c8e233cb3431b3c99d29856162c062733</cites><orcidid>0000-0003-2409-3742 ; 0000-0002-9150-1841 ; 0000-0001-6160-1158 ; 0000-0002-0978-8127 ; 0000-0002-7572-4690 ; 0000-0001-9898-464X ; 0000-0002-1989-3596 ; 0000-0001-6077-4145 ; 0000-0002-6145-436X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-05955-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-05955-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37286648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bale, S. D.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>McManus, M. D.</creatorcontrib><creatorcontrib>Desai, M. I.</creatorcontrib><creatorcontrib>Badman, S. T.</creatorcontrib><creatorcontrib>Larson, D. E.</creatorcontrib><creatorcontrib>Swisdak, M.</creatorcontrib><creatorcontrib>Horbury, T. S.</creatorcontrib><creatorcontrib>Raouafi, N. E.</creatorcontrib><creatorcontrib>Phan, T.</creatorcontrib><creatorcontrib>Velli, M.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D.</creatorcontrib><creatorcontrib>Panasenco, O.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><title>Interchange reconnection as the source of the fast solar wind within coronal holes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1 , 2 and interchange reconnection 3 – 5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7 , 8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. Measurements of fast solar wind streams from the Parker Solar Probe spacecraft provide strong evidence for the interchange reconnection mechanism being responsible for accelerating the fast solar wind.</description><subject>639/33/34/4124</subject><subject>639/33/525/870</subject><subject>Convection</subject><subject>Convection cells</subject><subject>Corona</subject><subject>Coronal holes</subject><subject>Coronal magnetic fields</subject><subject>Energy</subject><subject>Energy release rate</subject><subject>Energy sources</subject><subject>Heliosphere</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Magnetic reconnection</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Observatories</subject><subject>Plasma pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Solar physics</subject><subject>Solar probes</subject><subject>Solar surface</subject><subject>Solar wind</subject><subject>Spectra</subject><subject>Streams</subject><subject>Sun</subject><subject>Velocity</subject><subject>Wind measurement</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9PHCEYh0mjqVvbL9CDmcSLl6nAy99TY0xtTUxMjJ4Jw77rjJkFC7Oafvuyu9aqBy8QeB9-8PIQ8pXRb4yCOS6CSaNayqGl0krZwgcyY0KrViijd8iMUm5aakDtkU-l3FFKJdPiI9kDzY1SwszI1XmcMIfex1tsMoYUI4ZpSLHxpZl6bEpa5YBNWmxWC1-mujX63DwOcV6HqR9iE1JO0Y9Nn0Ysn8nuwo8FvzzN--Tm7Mf16a_24vLn-enJRRuEllMb0CjKWOc9V9pYKiSiZaA64QXrggoGOUDoQADrIFg759ZIxRQPVHENsE--b3PvV90S5wHjlP3o7vOw9PmPS35wrytx6N1tenCMcqFBs5pw9JSQ0-8VlskthxJwHH3EtCqOGw7WMmtERQ_foHf1Y2rPG0oJAEnXgXxLhZxKybh4fg2jbu3MbZ256sxtnLl1Hwcv-3g-8k9SBWALlFqqnvL_u9-J_QuUl6HJ</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Bale, S. D.</creator><creator>Drake, J. F.</creator><creator>McManus, M. D.</creator><creator>Desai, M. I.</creator><creator>Badman, S. T.</creator><creator>Larson, D. E.</creator><creator>Swisdak, M.</creator><creator>Horbury, T. S.</creator><creator>Raouafi, N. E.</creator><creator>Phan, T.</creator><creator>Velli, M.</creator><creator>McComas, D. J.</creator><creator>Cohen, C. M. S.</creator><creator>Mitchell, D.</creator><creator>Panasenco, O.</creator><creator>Kasper, J. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2409-3742</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7572-4690</orcidid><orcidid>https://orcid.org/0000-0001-9898-464X</orcidid><orcidid>https://orcid.org/0000-0002-1989-3596</orcidid><orcidid>https://orcid.org/0000-0001-6077-4145</orcidid><orcidid>https://orcid.org/0000-0002-6145-436X</orcidid></search><sort><creationdate>20230608</creationdate><title>Interchange reconnection as the source of the fast solar wind within coronal holes</title><author>Bale, S. D. ; Drake, J. F. ; McManus, M. D. ; Desai, M. I. ; Badman, S. T. ; Larson, D. E. ; Swisdak, M. ; Horbury, T. S. ; Raouafi, N. E. ; Phan, T. ; Velli, M. ; McComas, D. J. ; Cohen, C. M. S. ; Mitchell, D. ; Panasenco, O. ; Kasper, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ce86011baa26789045ee9136b4a41bc6c8e233cb3431b3c99d29856162c062733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/33/34/4124</topic><topic>639/33/525/870</topic><topic>Convection</topic><topic>Convection cells</topic><topic>Corona</topic><topic>Coronal holes</topic><topic>Coronal magnetic fields</topic><topic>Energy</topic><topic>Energy release rate</topic><topic>Energy sources</topic><topic>Heliosphere</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Magnetic reconnection</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Observatories</topic><topic>Plasma pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Solar physics</topic><topic>Solar probes</topic><topic>Solar surface</topic><topic>Solar wind</topic><topic>Spectra</topic><topic>Streams</topic><topic>Sun</topic><topic>Velocity</topic><topic>Wind measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bale, S. D.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>McManus, M. D.</creatorcontrib><creatorcontrib>Desai, M. I.</creatorcontrib><creatorcontrib>Badman, S. T.</creatorcontrib><creatorcontrib>Larson, D. E.</creatorcontrib><creatorcontrib>Swisdak, M.</creatorcontrib><creatorcontrib>Horbury, T. S.</creatorcontrib><creatorcontrib>Raouafi, N. E.</creatorcontrib><creatorcontrib>Phan, T.</creatorcontrib><creatorcontrib>Velli, M.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Cohen, C. M. S.</creatorcontrib><creatorcontrib>Mitchell, D.</creatorcontrib><creatorcontrib>Panasenco, O.</creatorcontrib><creatorcontrib>Kasper, J. C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bale, S. D.</au><au>Drake, J. F.</au><au>McManus, M. D.</au><au>Desai, M. I.</au><au>Badman, S. T.</au><au>Larson, D. E.</au><au>Swisdak, M.</au><au>Horbury, T. S.</au><au>Raouafi, N. E.</au><au>Phan, T.</au><au>Velli, M.</au><au>McComas, D. J.</au><au>Cohen, C. M. S.</au><au>Mitchell, D.</au><au>Panasenco, O.</au><au>Kasper, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interchange reconnection as the source of the fast solar wind within coronal holes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-06-08</date><risdate>2023</risdate><volume>618</volume><issue>7964</issue><spage>252</spage><epage>256</epage><pages>252-256</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1 , 2 and interchange reconnection 3 – 5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7 , 8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. Measurements of fast solar wind streams from the Parker Solar Probe spacecraft provide strong evidence for the interchange reconnection mechanism being responsible for accelerating the fast solar wind.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37286648</pmid><doi>10.1038/s41586-023-05955-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2409-3742</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0001-6160-1158</orcidid><orcidid>https://orcid.org/0000-0002-0978-8127</orcidid><orcidid>https://orcid.org/0000-0002-7572-4690</orcidid><orcidid>https://orcid.org/0000-0001-9898-464X</orcidid><orcidid>https://orcid.org/0000-0002-1989-3596</orcidid><orcidid>https://orcid.org/0000-0001-6077-4145</orcidid><orcidid>https://orcid.org/0000-0002-6145-436X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-06, Vol.618 (7964), p.252-256
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10247371
source SpringerLink Journals; Nature
subjects 639/33/34/4124
639/33/525/870
Convection
Convection cells
Corona
Coronal holes
Coronal magnetic fields
Energy
Energy release rate
Energy sources
Heliosphere
Humanities and Social Sciences
Magnetic fields
Magnetic reconnection
Mathematical models
multidisciplinary
Observatories
Plasma pressure
Science
Science (multidisciplinary)
Simulation
Solar corona
Solar magnetic field
Solar physics
Solar probes
Solar surface
Solar wind
Spectra
Streams
Sun
Velocity
Wind measurement
title Interchange reconnection as the source of the fast solar wind within coronal holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interchange%20reconnection%20as%20the%20source%20of%20the%20fast%20solar%20wind%20within%20coronal%20holes&rft.jtitle=Nature%20(London)&rft.au=Bale,%20S.%20D.&rft.date=2023-06-08&rft.volume=618&rft.issue=7964&rft.spage=252&rft.epage=256&rft.pages=252-256&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05955-3&rft_dat=%3Cproquest_pubme%3E2823991984%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826433501&rft_id=info:pmid/37286648&rfr_iscdi=true