Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19
This paper presents a co-infection mathematical model of COVID-19 and TB to study their synergistic dynamics. We first investigated the single infection models of each disease and then the co-infection dynamics of the two diseases. Indeed, we calculated the basic reproduction number of each model, a...
Gespeichert in:
Veröffentlicht in: | SeMA journal 2024, Vol.81 (3), p.429-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 3 |
container_start_page | 429 |
container_title | SeMA journal |
container_volume | 81 |
creator | Diabaté, Abou Bakari Sangaré, Boureima Koutou, Ousmane |
description | This paper presents a co-infection mathematical model of COVID-19 and TB to study their synergistic dynamics. We first investigated the single infection models of each disease and then the co-infection dynamics of the two diseases. Indeed, we calculated the basic reproduction number of each model, and then we studied the existence and the stability of the equilibrium points. We subsequently proved that the TB only infection model and the co-infection model exhibit backward and forward bifurcations. In addition, we performed a sensitivity analysis of the basic reproduction numbers to determine which parameters influence them the most. Furthermore, we applied Pontryagin’s maximum principle to our co-infection model to assess the impact of the use of an imperfect vaccine for COVID-19, taken as an optimal control strategy. Finally, we presented the results of the numerical simulations to support the theoretical findings. |
doi_str_mv | 10.1007/s40324-023-00330-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10243704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099125030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-fbba81913621d5c7ce72920f604ff00b90b56d86e091e4bdb806b0958d9398213</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhiNUJBDlD3CyxKUc3I7tfNinim7Lh7TSXhaulu3YrKtsvLWTRfz7OgSB4MDJ1sz7PqOZtyjOCHwnAM2PVAKjJQbKMABjgPlBcUwpJ7jhTfVl-lclZgLoUXGaktdABa8oUHJc7Fe7wW9Vh0zohxg6pHrVPSWfUHBIocXq_vY3JiKXW7QetY1m7MLU_rb-dZFN2PfOmsGHHm1Dazv06IdNViO_3dk4tdBeGeN7i1yIr7yvxaFTXbKnL-9JcXf1Z724wcvV9e3icokNqznHTmvFiSCspqStTGNsQwUFV0PpHIAWoKu65bUFQWypW82h1iAq3gomOCXspPg5c3ej3trW2Lyk6uQu5p3jkwzKy_ed3m_kQ9hLArRkDZSZcDETNh98N5dLOdWgpERQJvbTtPOXaTH8G20a5N8wxnzQJBkIQWgFDLKKzioTQ0rRulcsATkFKudAZQ5UPgcqeTax2ZSyuH-w8Q39ies_aeeg4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099125030</pqid></control><display><type>article</type><title>Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19</title><source>SpringerLink (Online service)</source><creator>Diabaté, Abou Bakari ; Sangaré, Boureima ; Koutou, Ousmane</creator><creatorcontrib>Diabaté, Abou Bakari ; Sangaré, Boureima ; Koutou, Ousmane</creatorcontrib><description>This paper presents a co-infection mathematical model of COVID-19 and TB to study their synergistic dynamics. We first investigated the single infection models of each disease and then the co-infection dynamics of the two diseases. Indeed, we calculated the basic reproduction number of each model, and then we studied the existence and the stability of the equilibrium points. We subsequently proved that the TB only infection model and the co-infection model exhibit backward and forward bifurcations. In addition, we performed a sensitivity analysis of the basic reproduction numbers to determine which parameters influence them the most. Furthermore, we applied Pontryagin’s maximum principle to our co-infection model to assess the impact of the use of an imperfect vaccine for COVID-19, taken as an optimal control strategy. Finally, we presented the results of the numerical simulations to support the theoretical findings.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-023-00330-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Bifurcations ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Optimal control ; Parameter sensitivity ; Sensitivity analysis ; Vaccines ; Viral diseases</subject><ispartof>SeMA journal, 2024, Vol.81 (3), p.429-456</ispartof><rights>The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-fbba81913621d5c7ce72920f604ff00b90b56d86e091e4bdb806b0958d9398213</citedby><cites>FETCH-LOGICAL-c3688-fbba81913621d5c7ce72920f604ff00b90b56d86e091e4bdb806b0958d9398213</cites><orcidid>0000-0001-8153-7640 ; 0000-0002-9780-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40324-023-00330-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40324-023-00330-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04219239$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Diabaté, Abou Bakari</creatorcontrib><creatorcontrib>Sangaré, Boureima</creatorcontrib><creatorcontrib>Koutou, Ousmane</creatorcontrib><title>Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>This paper presents a co-infection mathematical model of COVID-19 and TB to study their synergistic dynamics. We first investigated the single infection models of each disease and then the co-infection dynamics of the two diseases. Indeed, we calculated the basic reproduction number of each model, and then we studied the existence and the stability of the equilibrium points. We subsequently proved that the TB only infection model and the co-infection model exhibit backward and forward bifurcations. In addition, we performed a sensitivity analysis of the basic reproduction numbers to determine which parameters influence them the most. Furthermore, we applied Pontryagin’s maximum principle to our co-infection model to assess the impact of the use of an imperfect vaccine for COVID-19, taken as an optimal control strategy. Finally, we presented the results of the numerical simulations to support the theoretical findings.</description><subject>Applications of Mathematics</subject><subject>Bifurcations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Optimal control</subject><subject>Parameter sensitivity</subject><subject>Sensitivity analysis</subject><subject>Vaccines</subject><subject>Viral diseases</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhiNUJBDlD3CyxKUc3I7tfNinim7Lh7TSXhaulu3YrKtsvLWTRfz7OgSB4MDJ1sz7PqOZtyjOCHwnAM2PVAKjJQbKMABjgPlBcUwpJ7jhTfVl-lclZgLoUXGaktdABa8oUHJc7Fe7wW9Vh0zohxg6pHrVPSWfUHBIocXq_vY3JiKXW7QetY1m7MLU_rb-dZFN2PfOmsGHHm1Dazv06IdNViO_3dk4tdBeGeN7i1yIr7yvxaFTXbKnL-9JcXf1Z724wcvV9e3icokNqznHTmvFiSCspqStTGNsQwUFV0PpHIAWoKu65bUFQWypW82h1iAq3gomOCXspPg5c3ej3trW2Lyk6uQu5p3jkwzKy_ed3m_kQ9hLArRkDZSZcDETNh98N5dLOdWgpERQJvbTtPOXaTH8G20a5N8wxnzQJBkIQWgFDLKKzioTQ0rRulcsATkFKudAZQ5UPgcqeTax2ZSyuH-w8Q39ies_aeeg4w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Diabaté, Abou Bakari</creator><creator>Sangaré, Boureima</creator><creator>Koutou, Ousmane</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8153-7640</orcidid><orcidid>https://orcid.org/0000-0002-9780-4966</orcidid></search><sort><creationdate>2024</creationdate><title>Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19</title><author>Diabaté, Abou Bakari ; Sangaré, Boureima ; Koutou, Ousmane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-fbba81913621d5c7ce72920f604ff00b90b56d86e091e4bdb806b0958d9398213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Optimal control</topic><topic>Parameter sensitivity</topic><topic>Sensitivity analysis</topic><topic>Vaccines</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diabaté, Abou Bakari</creatorcontrib><creatorcontrib>Sangaré, Boureima</creatorcontrib><creatorcontrib>Koutou, Ousmane</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diabaté, Abou Bakari</au><au>Sangaré, Boureima</au><au>Koutou, Ousmane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2024</date><risdate>2024</risdate><volume>81</volume><issue>3</issue><spage>429</spage><epage>456</epage><pages>429-456</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>This paper presents a co-infection mathematical model of COVID-19 and TB to study their synergistic dynamics. We first investigated the single infection models of each disease and then the co-infection dynamics of the two diseases. Indeed, we calculated the basic reproduction number of each model, and then we studied the existence and the stability of the equilibrium points. We subsequently proved that the TB only infection model and the co-infection model exhibit backward and forward bifurcations. In addition, we performed a sensitivity analysis of the basic reproduction numbers to determine which parameters influence them the most. Furthermore, we applied Pontryagin’s maximum principle to our co-infection model to assess the impact of the use of an imperfect vaccine for COVID-19, taken as an optimal control strategy. Finally, we presented the results of the numerical simulations to support the theoretical findings.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-023-00330-8</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8153-7640</orcidid><orcidid>https://orcid.org/0000-0002-9780-4966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2254-3902 |
ispartof | SeMA journal, 2024, Vol.81 (3), p.429-456 |
issn | 2254-3902 2281-7875 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10243704 |
source | SpringerLink (Online service) |
subjects | Applications of Mathematics Bifurcations Mathematics Mathematics and Statistics Maximum principle Optimal control Parameter sensitivity Sensitivity analysis Vaccines Viral diseases |
title | Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20analysis%20of%20a%20COVID-19%20and%20Tuberculosis%20(TB)%20co-infection%20model%20with%20an%20imperfect%20vaccine%20for%20COVID-19&rft.jtitle=SeMA%20journal&rft.au=Diabat%C3%A9,%20Abou%20Bakari&rft.date=2024&rft.volume=81&rft.issue=3&rft.spage=429&rft.epage=456&rft.pages=429-456&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-023-00330-8&rft_dat=%3Cproquest_pubme%3E3099125030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099125030&rft_id=info:pmid/&rfr_iscdi=true |