Genetic deletion of skeletal muscle iPLA2γ results in mitochondrial dysfunction, muscle atrophy and alterations in whole-body energy metabolism
Skeletal muscle is the major site of glucose utilization in mammals integrating serum glucose clearance with mitochondrial respiration. To mechanistically elucidate the roles of iPLA2γ in skeletal muscle mitochondria, we generated a skeletal muscle-specific calcium-independent phospholipase A2γ knoc...
Gespeichert in:
Veröffentlicht in: | iScience 2023-06, Vol.26 (6), p.106895, Article 106895 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Skeletal muscle is the major site of glucose utilization in mammals integrating serum glucose clearance with mitochondrial respiration. To mechanistically elucidate the roles of iPLA2γ in skeletal muscle mitochondria, we generated a skeletal muscle-specific calcium-independent phospholipase A2γ knockout (SKMiPLA2γKO) mouse. Genetic ablation of skeletal muscle iPLA2γ resulted in pronounced muscle weakness, muscle atrophy, and increased blood lactate resulting from defects in mitochondrial function impairing metabolic processing of pyruvate and resultant bioenergetic inefficiency. Mitochondria from SKMiPLA2γKO mice were dysmorphic displaying marked changes in size, shape, and interfibrillar juxtaposition. Mitochondrial respirometry demonstrated a marked impairment in respiratory efficiency with decreases in the mass and function of oxidative phosphorylation complexes and cytochrome c. Further, a pronounced decrease in mitochondrial membrane potential and remodeling of cardiolipin molecular species were prominent. Collectively, these alterations prevented body weight gain during high-fat feeding through enhanced glucose disposal without efficient capture of chemical energy thereby altering whole-body bioenergetics.
[Display omitted]
•Skeletal muscle iPLA2γ ablation induces progressive muscle weakness and atrophy•Genetic knockout of iPLA2γ disrupts mitochondrial function and bioenergetics•Mitochondrial morphology and lipid homeostasis are disrupted by deletion of iPLA2γ•Skeletal muscle iPLA2γ contributes to regulation of whole-body energy metabolism
Cell biology; Cellular physiology; Physiology |
---|---|
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2023.106895 |