Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670

The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular breeding 2021-09, Vol.41 (9), p.54-54, Article 54
Hauptverfasser: Baranwal, Deepak Kumar, Bariana, Harbans, Bansal, Urmil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 9
container_start_page 54
container_title Molecular breeding
container_volume 41
creator Baranwal, Deepak Kumar
Bariana, Harbans
Bansal, Urmil
description The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F 7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12 . This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72 . QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29 , QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS , in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.
doi_str_mv 10.1007/s11032-021-01248-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10236087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569482892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCEQCYEf4IAsceEy0H6MHycURRCQIiGhcLb86Ekc7XoW2xPE3-NlQ3gcOHVLVV3d1TUMzym8pgDqTaUUOBuB0REoE3pUD4ZjOik2GqX1w95zDSNXgh8NT2q9gT5kpHw8HHHFwQiA4-HzOWZsKZCYasXQ0pLJMpPaStohKWttpGBNtbkckKRMHLlcc6rJZfLtGl0jG5djcR08XSuTUsHT4dHsNhWf3dWT4cv7d5dnH8aLT-cfz04vxiDU1EbKvJzlLLhBLoSgJmr02gcaZNR8FtFJHb1y0UfmPdXAZnDokXNjXOjOT4a3B93d6rcYA-ZW3MbuStq68t0uLtm_kZyu7dVyaykwLkGrrvDqTqEsX1eszW5TDbjplnBZq2WaTRP0B-6XvfyHerOsJXd_lk3SCM20YZ3FDqxQlloLzvfXULD7zOwhM9szsz8zs_srXvzp437kV0idwA-E2qF8heX37v_I_gD2d6JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569482892</pqid></control><display><type>article</type><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</creator><creatorcontrib>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</creatorcontrib><description>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F 7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12 . This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72 . QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29 , QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS , in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-021-01248-7</identifier><identifier>PMID: 37309400</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Disease resistance ; Gene mapping ; Genes ; Genetic analysis ; Genomics ; Genotyping ; Inbreeding ; Infections ; Life Sciences ; Microclimate ; Molecular biology ; Pathogens ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant resistance ; Plant Sciences ; Population ; Quantitative trait loci ; Seedlings ; Seeds ; Stripe rust ; Virulence ; Wheat</subject><ispartof>Molecular breeding, 2021-09, Vol.41 (9), p.54-54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</citedby><cites>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</cites><orcidid>0000-0003-4299-3912 ; 0000-0003-1119-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236087/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236087/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37309400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranwal, Deepak Kumar</creatorcontrib><creatorcontrib>Bariana, Harbans</creatorcontrib><creatorcontrib>Bansal, Urmil</creatorcontrib><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><addtitle>Mol Breed</addtitle><description>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F 7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12 . This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72 . QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29 , QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS , in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Disease resistance</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Inbreeding</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Microclimate</subject><subject>Molecular biology</subject><subject>Pathogens</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Population</subject><subject>Quantitative trait loci</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Stripe rust</subject><subject>Virulence</subject><subject>Wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctuFDEQHCEQCYEf4IAsceEy0H6MHycURRCQIiGhcLb86Ekc7XoW2xPE3-NlQ3gcOHVLVV3d1TUMzym8pgDqTaUUOBuB0REoE3pUD4ZjOik2GqX1w95zDSNXgh8NT2q9gT5kpHw8HHHFwQiA4-HzOWZsKZCYasXQ0pLJMpPaStohKWttpGBNtbkckKRMHLlcc6rJZfLtGl0jG5djcR08XSuTUsHT4dHsNhWf3dWT4cv7d5dnH8aLT-cfz04vxiDU1EbKvJzlLLhBLoSgJmr02gcaZNR8FtFJHb1y0UfmPdXAZnDokXNjXOjOT4a3B93d6rcYA-ZW3MbuStq68t0uLtm_kZyu7dVyaykwLkGrrvDqTqEsX1eszW5TDbjplnBZq2WaTRP0B-6XvfyHerOsJXd_lk3SCM20YZ3FDqxQlloLzvfXULD7zOwhM9szsz8zs_srXvzp437kV0idwA-E2qF8heX37v_I_gD2d6JA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Baranwal, Deepak Kumar</creator><creator>Bariana, Harbans</creator><creator>Bansal, Urmil</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4299-3912</orcidid><orcidid>https://orcid.org/0000-0003-1119-4464</orcidid></search><sort><creationdate>20210901</creationdate><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><author>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Disease resistance</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Inbreeding</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Microclimate</topic><topic>Molecular biology</topic><topic>Pathogens</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Population</topic><topic>Quantitative trait loci</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Stripe rust</topic><topic>Virulence</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranwal, Deepak Kumar</creatorcontrib><creatorcontrib>Bariana, Harbans</creatorcontrib><creatorcontrib>Bansal, Urmil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranwal, Deepak Kumar</au><au>Bariana, Harbans</au><au>Bansal, Urmil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><addtitle>Mol Breed</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>41</volume><issue>9</issue><spage>54</spage><epage>54</epage><pages>54-54</pages><artnum>54</artnum><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F 7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12 . This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72 . QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29 , QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS , in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37309400</pmid><doi>10.1007/s11032-021-01248-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4299-3912</orcidid><orcidid>https://orcid.org/0000-0003-1119-4464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-3743
ispartof Molecular breeding, 2021-09, Vol.41 (9), p.54-54, Article 54
issn 1380-3743
1572-9788
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10236087
source PubMed Central; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biotechnology
Cultivars
Disease resistance
Gene mapping
Genes
Genetic analysis
Genomics
Genotyping
Inbreeding
Infections
Life Sciences
Microclimate
Molecular biology
Pathogens
Plant biology
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant resistance
Plant Sciences
Population
Quantitative trait loci
Seedlings
Seeds
Stripe rust
Virulence
Wheat
title Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20stripe%20rust%20resistance%20in%20a%20Tunisian%20wheat%20landrace%20Aus26670&rft.jtitle=Molecular%20breeding&rft.au=Baranwal,%20Deepak%20Kumar&rft.date=2021-09-01&rft.volume=41&rft.issue=9&rft.spage=54&rft.epage=54&rft.pages=54-54&rft.artnum=54&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-021-01248-7&rft_dat=%3Cproquest_pubme%3E2569482892%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569482892&rft_id=info:pmid/37309400&rfr_iscdi=true