Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670
The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen ( Puccinia striiformis f. sp. tritici ; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus...
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2021-09, Vol.41 (9), p.54-54, Article 54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 9 |
container_start_page | 54 |
container_title | Molecular breeding |
container_volume | 41 |
creator | Baranwal, Deepak Kumar Bariana, Harbans Bansal, Urmil |
description | The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (
Puccinia striiformis
f. sp.
tritici
; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F
7
recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named
YrAW12
. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay.
YrAW12
was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene
Yr72
. QTL analysis suggested the involvement of four genomic regions which were named:
QYr.sun-1BL/Yr29
,
QYr.sun-5AL, QYr.sun-5BL
and
QYr.sun-6DS
, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of
QYr.sun-5AL
(654.5 Mb) and
QYr.sun-6DS
(1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci. |
doi_str_mv | 10.1007/s11032-021-01248-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10236087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569482892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCEQCYEf4IAsceEy0H6MHycURRCQIiGhcLb86Ekc7XoW2xPE3-NlQ3gcOHVLVV3d1TUMzym8pgDqTaUUOBuB0REoE3pUD4ZjOik2GqX1w95zDSNXgh8NT2q9gT5kpHw8HHHFwQiA4-HzOWZsKZCYasXQ0pLJMpPaStohKWttpGBNtbkckKRMHLlcc6rJZfLtGl0jG5djcR08XSuTUsHT4dHsNhWf3dWT4cv7d5dnH8aLT-cfz04vxiDU1EbKvJzlLLhBLoSgJmr02gcaZNR8FtFJHb1y0UfmPdXAZnDokXNjXOjOT4a3B93d6rcYA-ZW3MbuStq68t0uLtm_kZyu7dVyaykwLkGrrvDqTqEsX1eszW5TDbjplnBZq2WaTRP0B-6XvfyHerOsJXd_lk3SCM20YZ3FDqxQlloLzvfXULD7zOwhM9szsz8zs_srXvzp437kV0idwA-E2qF8heX37v_I_gD2d6JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569482892</pqid></control><display><type>article</type><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</creator><creatorcontrib>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</creatorcontrib><description>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (
Puccinia striiformis
f. sp.
tritici
; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F
7
recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named
YrAW12
. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay.
YrAW12
was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene
Yr72
. QTL analysis suggested the involvement of four genomic regions which were named:
QYr.sun-1BL/Yr29
,
QYr.sun-5AL, QYr.sun-5BL
and
QYr.sun-6DS
, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of
QYr.sun-5AL
(654.5 Mb) and
QYr.sun-6DS
(1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-021-01248-7</identifier><identifier>PMID: 37309400</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Disease resistance ; Gene mapping ; Genes ; Genetic analysis ; Genomics ; Genotyping ; Inbreeding ; Infections ; Life Sciences ; Microclimate ; Molecular biology ; Pathogens ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant resistance ; Plant Sciences ; Population ; Quantitative trait loci ; Seedlings ; Seeds ; Stripe rust ; Virulence ; Wheat</subject><ispartof>Molecular breeding, 2021-09, Vol.41 (9), p.54-54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</citedby><cites>FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</cites><orcidid>0000-0003-4299-3912 ; 0000-0003-1119-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236087/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236087/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37309400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranwal, Deepak Kumar</creatorcontrib><creatorcontrib>Bariana, Harbans</creatorcontrib><creatorcontrib>Bansal, Urmil</creatorcontrib><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><addtitle>Mol Breed</addtitle><description>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (
Puccinia striiformis
f. sp.
tritici
; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F
7
recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named
YrAW12
. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay.
YrAW12
was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene
Yr72
. QTL analysis suggested the involvement of four genomic regions which were named:
QYr.sun-1BL/Yr29
,
QYr.sun-5AL, QYr.sun-5BL
and
QYr.sun-6DS
, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of
QYr.sun-5AL
(654.5 Mb) and
QYr.sun-6DS
(1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Disease resistance</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Inbreeding</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Microclimate</subject><subject>Molecular biology</subject><subject>Pathogens</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Population</subject><subject>Quantitative trait loci</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Stripe rust</subject><subject>Virulence</subject><subject>Wheat</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctuFDEQHCEQCYEf4IAsceEy0H6MHycURRCQIiGhcLb86Ekc7XoW2xPE3-NlQ3gcOHVLVV3d1TUMzym8pgDqTaUUOBuB0REoE3pUD4ZjOik2GqX1w95zDSNXgh8NT2q9gT5kpHw8HHHFwQiA4-HzOWZsKZCYasXQ0pLJMpPaStohKWttpGBNtbkckKRMHLlcc6rJZfLtGl0jG5djcR08XSuTUsHT4dHsNhWf3dWT4cv7d5dnH8aLT-cfz04vxiDU1EbKvJzlLLhBLoSgJmr02gcaZNR8FtFJHb1y0UfmPdXAZnDokXNjXOjOT4a3B93d6rcYA-ZW3MbuStq68t0uLtm_kZyu7dVyaykwLkGrrvDqTqEsX1eszW5TDbjplnBZq2WaTRP0B-6XvfyHerOsJXd_lk3SCM20YZ3FDqxQlloLzvfXULD7zOwhM9szsz8zs_srXvzp437kV0idwA-E2qF8heX37v_I_gD2d6JA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Baranwal, Deepak Kumar</creator><creator>Bariana, Harbans</creator><creator>Bansal, Urmil</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4299-3912</orcidid><orcidid>https://orcid.org/0000-0003-1119-4464</orcidid></search><sort><creationdate>20210901</creationdate><title>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</title><author>Baranwal, Deepak Kumar ; Bariana, Harbans ; Bansal, Urmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-12b6f6f439e344419d8eb8bc1c6d83f4da68db7adbd2bb1802f0aebe3399ac103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Disease resistance</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Inbreeding</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Microclimate</topic><topic>Molecular biology</topic><topic>Pathogens</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Population</topic><topic>Quantitative trait loci</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Stripe rust</topic><topic>Virulence</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranwal, Deepak Kumar</creatorcontrib><creatorcontrib>Bariana, Harbans</creatorcontrib><creatorcontrib>Bansal, Urmil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranwal, Deepak Kumar</au><au>Bariana, Harbans</au><au>Bansal, Urmil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><addtitle>Mol Breed</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>41</volume><issue>9</issue><spage>54</spage><epage>54</epage><pages>54-54</pages><artnum>54</artnum><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (
Puccinia striiformis
f. sp.
tritici
; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet ‘S’ (AvS) to generate 123 F
7
recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named
YrAW12
. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay.
YrAW12
was mapped in the 754.9–763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene
Yr72
. QTL analysis suggested the involvement of four genomic regions which were named:
QYr.sun-1BL/Yr29
,
QYr.sun-5AL, QYr.sun-5BL
and
QYr.sun-6DS
, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of
QYr.sun-5AL
(654.5 Mb) and
QYr.sun-6DS
(1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37309400</pmid><doi>10.1007/s11032-021-01248-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4299-3912</orcidid><orcidid>https://orcid.org/0000-0003-1119-4464</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-3743 |
ispartof | Molecular breeding, 2021-09, Vol.41 (9), p.54-54, Article 54 |
issn | 1380-3743 1572-9788 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10236087 |
source | PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biotechnology Cultivars Disease resistance Gene mapping Genes Genetic analysis Genomics Genotyping Inbreeding Infections Life Sciences Microclimate Molecular biology Pathogens Plant biology Plant Genetics and Genomics Plant Pathology Plant Physiology Plant resistance Plant Sciences Population Quantitative trait loci Seedlings Seeds Stripe rust Virulence Wheat |
title | Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20stripe%20rust%20resistance%20in%20a%20Tunisian%20wheat%20landrace%20Aus26670&rft.jtitle=Molecular%20breeding&rft.au=Baranwal,%20Deepak%20Kumar&rft.date=2021-09-01&rft.volume=41&rft.issue=9&rft.spage=54&rft.epage=54&rft.pages=54-54&rft.artnum=54&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-021-01248-7&rft_dat=%3Cproquest_pubme%3E2569482892%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569482892&rft_id=info:pmid/37309400&rfr_iscdi=true |