Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation

We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-07, Vol.23 (27), p.14940-14951
Hauptverfasser: Li, Xiaohui, Panetier, Julien A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14951
container_issue 27
container_start_page 14940
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Li, Xiaohui
Panetier, Julien A
description We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slightly acidic imidazolium moieties in the secondary coordination sphere and reduce CO2 at mild electrochemical potentials. Here, we employ density functional theory (DFT) calculations to understand the electronic structure and reactivity for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) using [Mn[bpyMe(ImMe)](CO)3Br]+ (1+). Our work indicates that, in the absence of water, the imidazolium ligand stabilizes the Mn–CO2 adduct through hydrogen bonding-like interactions, similar to the activated CO2 molecule in the C-cluster of the Ni,Fe-carbon monoxide dehydrogenase II, and assists the protonation steps during CO2RR and HER. More significantly, based on the energy span model, we demonstrate that the selectivity for CO2 fixation over proton reduction results from a higher activation energy for yielding the manganese dihydrogen intermediate before H2 release, which is the TOF determining transition state (TDTS) under an applied potential of Φ = −1.82 V versus Fc0/+. The calculated TOF also reflects the selectivity for CO2RR, which is four orders of magnitude larger than for HER, consistent with the CPE experiments that show no hydrogen was obtained. In the case of CO2 reduction, the TOF determining intermediate (TDI) corresponds to the doubly reduced active catalyst, 1C2(red2), which features a manganese(0) center that couples ferromagnetically with one unpaired electron in the π* orbital of bipyridine. On the other hand, for HER, the metal-hydride intermediate, 1C2(I11-R), is the TDI. Finally, second-order perturbation analyses imply that the strongest hydrogen bonding-like interaction at the C2 position in 1+ contributes to the higher catalytic activity with respect to [Mn[bpyMe(ImMe2)](CO)3Br]+ (2+) and [Mn[bpyMe(ImMe4)](CO)3Br]+ (3+) for CO2 fixation, consistent with the experimental data.
doi_str_mv 10.1039/d1cp01576a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10229143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551063651</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-bf599f3a47f0991e6b26a243e6005d03974f29eff3a34267f8bf43d1d9fe40253</originalsourceid><addsrcrecordid>eNpVUU1r3DAQNaWhSdNe-gsGetmldasvy6tDKK1pk0CWhdCeQjCyJSUKtuRK8oLzJ_uXoiah0MMwj5k3b5g3RfEOo08YUfFZ4X5CuKq5fFEcYcZpKdCGvfyHa35YvI7xDqHMwvRVcUgZIXTD-FHxp_HjNCeZrHdygJhmtYB3kG41BC37ZPc25YoBO1ol7_1g57E0s-ufJuy9VjBKdyOdjho6Oy3BqmWAFGwvQ-ddxnrQfQq-l0kOS0wRrrbuqpuWrV6dj-Xl-nrV7Nb0W7j-AKtLOIGt_piDgHQqZ7YG4wM0O1ImXzY76L3b6xDzfvAZwBn5Sxgfb3hTHBg5RP32OR8Xv358_9mclRe70_Pm60U5EVSlsjOVEIZKVhskBNa8I1wSRjVHqFLZ1JoZIrTJlOwVr82mM4wqrITRDJGKHhdfnnSnuRu16rVLQQ7tFOwow9J6adv_O87etjd-32JEiMCMZoX3zwrB_551TO2dn0O2NLakqjDilOdnPQAZzJXL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551063651</pqid></control><display><type>article</type><title>Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Xiaohui ; Panetier, Julien A</creator><creatorcontrib>Li, Xiaohui ; Panetier, Julien A</creatorcontrib><description>We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slightly acidic imidazolium moieties in the secondary coordination sphere and reduce CO2 at mild electrochemical potentials. Here, we employ density functional theory (DFT) calculations to understand the electronic structure and reactivity for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) using [Mn[bpyMe(ImMe)](CO)3Br]+ (1+). Our work indicates that, in the absence of water, the imidazolium ligand stabilizes the Mn–CO2 adduct through hydrogen bonding-like interactions, similar to the activated CO2 molecule in the C-cluster of the Ni,Fe-carbon monoxide dehydrogenase II, and assists the protonation steps during CO2RR and HER. More significantly, based on the energy span model, we demonstrate that the selectivity for CO2 fixation over proton reduction results from a higher activation energy for yielding the manganese dihydrogen intermediate before H2 release, which is the TOF determining transition state (TDTS) under an applied potential of Φ = −1.82 V versus Fc0/+. The calculated TOF also reflects the selectivity for CO2RR, which is four orders of magnitude larger than for HER, consistent with the CPE experiments that show no hydrogen was obtained. In the case of CO2 reduction, the TOF determining intermediate (TDI) corresponds to the doubly reduced active catalyst, 1C2(red2), which features a manganese(0) center that couples ferromagnetically with one unpaired electron in the π* orbital of bipyridine. On the other hand, for HER, the metal-hydride intermediate, 1C2(I11-R), is the TDI. Finally, second-order perturbation analyses imply that the strongest hydrogen bonding-like interaction at the C2 position in 1+ contributes to the higher catalytic activity with respect to [Mn[bpyMe(ImMe2)](CO)3Br]+ (2+) and [Mn[bpyMe(ImMe4)](CO)3Br]+ (3+) for CO2 fixation, consistent with the experimental data.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01576a</identifier><identifier>PMID: 34223846</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Bonding strength ; Carbon dioxide ; Carbon monoxide ; Catalysts ; Catalytic activity ; Chemical reduction ; Computation ; Density functional theory ; Electrocatalysts ; Electronic structure ; Ferromagnetism ; Fixation ; Hydrogen ; Hydrogen bonding ; Hydrogen evolution reactions ; Manganese ; Metal hydrides ; Nickel ; Perturbation ; Protonation ; Protons ; Selectivity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-07, Vol.23 (27), p.14940-14951</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Panetier, Julien A</creatorcontrib><title>Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation</title><title>Physical chemistry chemical physics : PCCP</title><description>We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slightly acidic imidazolium moieties in the secondary coordination sphere and reduce CO2 at mild electrochemical potentials. Here, we employ density functional theory (DFT) calculations to understand the electronic structure and reactivity for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) using [Mn[bpyMe(ImMe)](CO)3Br]+ (1+). Our work indicates that, in the absence of water, the imidazolium ligand stabilizes the Mn–CO2 adduct through hydrogen bonding-like interactions, similar to the activated CO2 molecule in the C-cluster of the Ni,Fe-carbon monoxide dehydrogenase II, and assists the protonation steps during CO2RR and HER. More significantly, based on the energy span model, we demonstrate that the selectivity for CO2 fixation over proton reduction results from a higher activation energy for yielding the manganese dihydrogen intermediate before H2 release, which is the TOF determining transition state (TDTS) under an applied potential of Φ = −1.82 V versus Fc0/+. The calculated TOF also reflects the selectivity for CO2RR, which is four orders of magnitude larger than for HER, consistent with the CPE experiments that show no hydrogen was obtained. In the case of CO2 reduction, the TOF determining intermediate (TDI) corresponds to the doubly reduced active catalyst, 1C2(red2), which features a manganese(0) center that couples ferromagnetically with one unpaired electron in the π* orbital of bipyridine. On the other hand, for HER, the metal-hydride intermediate, 1C2(I11-R), is the TDI. Finally, second-order perturbation analyses imply that the strongest hydrogen bonding-like interaction at the C2 position in 1+ contributes to the higher catalytic activity with respect to [Mn[bpyMe(ImMe2)](CO)3Br]+ (2+) and [Mn[bpyMe(ImMe4)](CO)3Br]+ (3+) for CO2 fixation, consistent with the experimental data.</description><subject>Activated carbon</subject><subject>Bonding strength</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Computation</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electronic structure</subject><subject>Ferromagnetism</subject><subject>Fixation</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Metal hydrides</subject><subject>Nickel</subject><subject>Perturbation</subject><subject>Protonation</subject><subject>Protons</subject><subject>Selectivity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUU1r3DAQNaWhSdNe-gsGetmldasvy6tDKK1pk0CWhdCeQjCyJSUKtuRK8oLzJ_uXoiah0MMwj5k3b5g3RfEOo08YUfFZ4X5CuKq5fFEcYcZpKdCGvfyHa35YvI7xDqHMwvRVcUgZIXTD-FHxp_HjNCeZrHdygJhmtYB3kG41BC37ZPc25YoBO1ol7_1g57E0s-ufJuy9VjBKdyOdjho6Oy3BqmWAFGwvQ-ddxnrQfQq-l0kOS0wRrrbuqpuWrV6dj-Xl-nrV7Nb0W7j-AKtLOIGt_piDgHQqZ7YG4wM0O1ImXzY76L3b6xDzfvAZwBn5Sxgfb3hTHBg5RP32OR8Xv358_9mclRe70_Pm60U5EVSlsjOVEIZKVhskBNa8I1wSRjVHqFLZ1JoZIrTJlOwVr82mM4wqrITRDJGKHhdfnnSnuRu16rVLQQ7tFOwow9J6adv_O87etjd-32JEiMCMZoX3zwrB_551TO2dn0O2NLakqjDilOdnPQAZzJXL</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Li, Xiaohui</creator><creator>Panetier, Julien A</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20210721</creationdate><title>Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation</title><author>Li, Xiaohui ; Panetier, Julien A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-bf599f3a47f0991e6b26a243e6005d03974f29eff3a34267f8bf43d1d9fe40253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Bonding strength</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Computation</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electronic structure</topic><topic>Ferromagnetism</topic><topic>Fixation</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Metal hydrides</topic><topic>Nickel</topic><topic>Perturbation</topic><topic>Protonation</topic><topic>Protons</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Panetier, Julien A</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaohui</au><au>Panetier, Julien A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-07-21</date><risdate>2021</risdate><volume>23</volume><issue>27</issue><spage>14940</spage><epage>14951</epage><pages>14940-14951</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We have recently reported a series of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts, [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2, and Me4), for CO2-to-CO conversion in the presence of H2O as the proton source [J. Am. Chem. Soc., 2019, 141, 6569]. These catalysts feature slightly acidic imidazolium moieties in the secondary coordination sphere and reduce CO2 at mild electrochemical potentials. Here, we employ density functional theory (DFT) calculations to understand the electronic structure and reactivity for the CO2 reduction reaction (CO2RR) over the competing hydrogen evolution reaction (HER) using [Mn[bpyMe(ImMe)](CO)3Br]+ (1+). Our work indicates that, in the absence of water, the imidazolium ligand stabilizes the Mn–CO2 adduct through hydrogen bonding-like interactions, similar to the activated CO2 molecule in the C-cluster of the Ni,Fe-carbon monoxide dehydrogenase II, and assists the protonation steps during CO2RR and HER. More significantly, based on the energy span model, we demonstrate that the selectivity for CO2 fixation over proton reduction results from a higher activation energy for yielding the manganese dihydrogen intermediate before H2 release, which is the TOF determining transition state (TDTS) under an applied potential of Φ = −1.82 V versus Fc0/+. The calculated TOF also reflects the selectivity for CO2RR, which is four orders of magnitude larger than for HER, consistent with the CPE experiments that show no hydrogen was obtained. In the case of CO2 reduction, the TOF determining intermediate (TDI) corresponds to the doubly reduced active catalyst, 1C2(red2), which features a manganese(0) center that couples ferromagnetically with one unpaired electron in the π* orbital of bipyridine. On the other hand, for HER, the metal-hydride intermediate, 1C2(I11-R), is the TDI. Finally, second-order perturbation analyses imply that the strongest hydrogen bonding-like interaction at the C2 position in 1+ contributes to the higher catalytic activity with respect to [Mn[bpyMe(ImMe2)](CO)3Br]+ (2+) and [Mn[bpyMe(ImMe4)](CO)3Br]+ (3+) for CO2 fixation, consistent with the experimental data.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34223846</pmid><doi>10.1039/d1cp01576a</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-07, Vol.23 (27), p.14940-14951
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10229143
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Activated carbon
Bonding strength
Carbon dioxide
Carbon monoxide
Catalysts
Catalytic activity
Chemical reduction
Computation
Density functional theory
Electrocatalysts
Electronic structure
Ferromagnetism
Fixation
Hydrogen
Hydrogen bonding
Hydrogen evolution reactions
Manganese
Metal hydrides
Nickel
Perturbation
Protonation
Protons
Selectivity
title Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20study%20on%20the%20reactivity%20of%20imidazolium-functionalized%20manganese%20bipyridyl%20tricarbonyl%20electrocatalysts%20%5BMn%5BbpyMe(Im-R)%5D(CO)3Br%5D+%20(R%20=%20Me,%20Me2%20and%20Me4)%20for%20CO2-to-CO%20conversion%20over%20H2%20formation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Xiaohui&rft.date=2021-07-21&rft.volume=23&rft.issue=27&rft.spage=14940&rft.epage=14951&rft.pages=14940-14951&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01576a&rft_dat=%3Cproquest_pubme%3E2551063651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551063651&rft_id=info:pmid/34223846&rfr_iscdi=true