Understanding Randomness on a Molecular Level: A Diagnostic Tool

Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CBE - Life Sciences Education 2023-06, Vol.22 (2), p.ar17-ar17
Hauptverfasser: Tobler, Samuel, Köhler, Katja, Sinha, Tanmay, Hafen, Ernst, Kapur, Manu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ar17
container_issue 2
container_start_page ar17
container_title CBE - Life Sciences Education
container_volume 22
creator Tobler, Samuel
Köhler, Katja
Sinha, Tanmay
Hafen, Ernst
Kapur, Manu
description Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowledge to other contexts. Furthermore, elaborate tools to assess students' understanding of these stochastic processes are missing, despite the fundamental nature of this concept and the increasing evidence demonstrating its importance in biology. Thus, we developed the Molecular Randomness Concept Inventory (MRCI), an instrument composed of nine multiple-choice questions based on students' most prevalent misconceptions, to quantify students' understanding of stochastic processes in biological systems. The MRCI was administered to 67 first-year natural science students in Switzerland. The psychometric properties of the inventory were analyzed using classical test theory and Rasch modeling. Moreover, think-aloud interviews were conducted to ensure response validity. Results indicate that the MRCI yields valid and reliable estimations of students' conceptual understanding of molecular randomness in the higher educational setting studied. Ultimately, the performance analysis sheds light on the extent and the limitations of students' understanding of the concept of stochasticity on a molecular level.
doi_str_mv 10.1187/cbe.22-05-0097
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10228260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772537842</galeid><ericid>EJ1391343</ericid><sourcerecordid>A772537842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-12f1cf0954685af720fe332cd2f582eaa974be1d5038860f130dfec0629f71d43</originalsourceid><addsrcrecordid>eNpVkc9vFCEUx4nR2Fq9etPM0cusj8fMwHjRTa2_ssbEtGfCMo8Vw0CF2Sb-99JsXWs4PML7vC-QD2PPOaw4V_K13dIKsYW-BRjlA3bKR8FbOXLx8N7-hD0p5SdANwDvH7MTMagBFcApe3cVJ8plMXHycdd8rzXNkUppUmxM8zUFsvtgcrOhGwpvmnXz3ptdTGXxtrlMKTxlj5wJhZ7d1TN29eHi8vxTu_n28fP5etParsel5ei4dTD23aB64ySCIyHQTuh6hWTMKLst8akHodQAjguYHFkYcHSST504Y28Pudf77UyTpbhkE_R19rPJv3UyXv_fif6H3qUbzQFR4QA14dVdQk6_9lQWPftiKQQTKe2LRqlEN4p6f0VXB3RnAmkfXaqRtq6JZm9TJOfr-VpK7IVUHf4bsDmVkskdH8ZB34rSVZRG1NDrW1F14OX97xzxv2Yq8OIAUPb22L74wkX12QnxB4jol3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783493388</pqid></control><display><type>article</type><title>Understanding Randomness on a Molecular Level: A Diagnostic Tool</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tobler, Samuel ; Köhler, Katja ; Sinha, Tanmay ; Hafen, Ernst ; Kapur, Manu</creator><contributor>Couch, Brian</contributor><creatorcontrib>Tobler, Samuel ; Köhler, Katja ; Sinha, Tanmay ; Hafen, Ernst ; Kapur, Manu ; Couch, Brian</creatorcontrib><description>Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowledge to other contexts. Furthermore, elaborate tools to assess students' understanding of these stochastic processes are missing, despite the fundamental nature of this concept and the increasing evidence demonstrating its importance in biology. Thus, we developed the Molecular Randomness Concept Inventory (MRCI), an instrument composed of nine multiple-choice questions based on students' most prevalent misconceptions, to quantify students' understanding of stochastic processes in biological systems. The MRCI was administered to 67 first-year natural science students in Switzerland. The psychometric properties of the inventory were analyzed using classical test theory and Rasch modeling. Moreover, think-aloud interviews were conducted to ensure response validity. Results indicate that the MRCI yields valid and reliable estimations of students' conceptual understanding of molecular randomness in the higher educational setting studied. Ultimately, the performance analysis sheds light on the extent and the limitations of students' understanding of the concept of stochasticity on a molecular level.</description><identifier>ISSN: 1931-7913</identifier><identifier>EISSN: 1931-7913</identifier><identifier>DOI: 10.1187/cbe.22-05-0097</identifier><identifier>PMID: 36862800</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Biology ; Concept Formation ; Foreign Countries ; General s and ; Humans ; Item Response Theory ; Knowledge ; Learning Processes ; Misconceptions ; Molecular Biology ; Molecular Structure ; Multiple Choice Tests ; Protocol Analysis ; Psychometrics ; Science Instruction ; Science Tests ; Scientific Concepts ; Stochastic processes ; Student Evaluation ; Students ; Test Reliability ; Test Validity ; Transfer of Training ; Undergraduate Students</subject><ispartof>CBE - Life Sciences Education, 2023-06, Vol.22 (2), p.ar17-ar17</ispartof><rights>COPYRIGHT 2023 American Society for Cell Biology</rights><rights>2023 S. Tobler CBE—Life Sciences Education © 2023 The American Society for Cell Biology. “ASCB®” and “The American Society for Cell Biology®” are registered trademarks of The American Society for Cell Biology. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-12f1cf0954685af720fe332cd2f582eaa974be1d5038860f130dfec0629f71d43</citedby><cites>FETCH-LOGICAL-c452t-12f1cf0954685af720fe332cd2f582eaa974be1d5038860f130dfec0629f71d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228260/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228260/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1391343$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36862800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Couch, Brian</contributor><creatorcontrib>Tobler, Samuel</creatorcontrib><creatorcontrib>Köhler, Katja</creatorcontrib><creatorcontrib>Sinha, Tanmay</creatorcontrib><creatorcontrib>Hafen, Ernst</creatorcontrib><creatorcontrib>Kapur, Manu</creatorcontrib><title>Understanding Randomness on a Molecular Level: A Diagnostic Tool</title><title>CBE - Life Sciences Education</title><addtitle>CBE Life Sci Educ</addtitle><description>Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowledge to other contexts. Furthermore, elaborate tools to assess students' understanding of these stochastic processes are missing, despite the fundamental nature of this concept and the increasing evidence demonstrating its importance in biology. Thus, we developed the Molecular Randomness Concept Inventory (MRCI), an instrument composed of nine multiple-choice questions based on students' most prevalent misconceptions, to quantify students' understanding of stochastic processes in biological systems. The MRCI was administered to 67 first-year natural science students in Switzerland. The psychometric properties of the inventory were analyzed using classical test theory and Rasch modeling. Moreover, think-aloud interviews were conducted to ensure response validity. Results indicate that the MRCI yields valid and reliable estimations of students' conceptual understanding of molecular randomness in the higher educational setting studied. Ultimately, the performance analysis sheds light on the extent and the limitations of students' understanding of the concept of stochasticity on a molecular level.</description><subject>Biology</subject><subject>Concept Formation</subject><subject>Foreign Countries</subject><subject>General s and</subject><subject>Humans</subject><subject>Item Response Theory</subject><subject>Knowledge</subject><subject>Learning Processes</subject><subject>Misconceptions</subject><subject>Molecular Biology</subject><subject>Molecular Structure</subject><subject>Multiple Choice Tests</subject><subject>Protocol Analysis</subject><subject>Psychometrics</subject><subject>Science Instruction</subject><subject>Science Tests</subject><subject>Scientific Concepts</subject><subject>Stochastic processes</subject><subject>Student Evaluation</subject><subject>Students</subject><subject>Test Reliability</subject><subject>Test Validity</subject><subject>Transfer of Training</subject><subject>Undergraduate Students</subject><issn>1931-7913</issn><issn>1931-7913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9vFCEUx4nR2Fq9etPM0cusj8fMwHjRTa2_ssbEtGfCMo8Vw0CF2Sb-99JsXWs4PML7vC-QD2PPOaw4V_K13dIKsYW-BRjlA3bKR8FbOXLx8N7-hD0p5SdANwDvH7MTMagBFcApe3cVJ8plMXHycdd8rzXNkUppUmxM8zUFsvtgcrOhGwpvmnXz3ptdTGXxtrlMKTxlj5wJhZ7d1TN29eHi8vxTu_n28fP5etParsel5ei4dTD23aB64ySCIyHQTuh6hWTMKLst8akHodQAjguYHFkYcHSST504Y28Pudf77UyTpbhkE_R19rPJv3UyXv_fif6H3qUbzQFR4QA14dVdQk6_9lQWPftiKQQTKe2LRqlEN4p6f0VXB3RnAmkfXaqRtq6JZm9TJOfr-VpK7IVUHf4bsDmVkskdH8ZB34rSVZRG1NDrW1F14OX97xzxv2Yq8OIAUPb22L74wkX12QnxB4jol3k</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Tobler, Samuel</creator><creator>Köhler, Katja</creator><creator>Sinha, Tanmay</creator><creator>Hafen, Ernst</creator><creator>Kapur, Manu</creator><general>American Society for Cell Biology</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230601</creationdate><title>Understanding Randomness on a Molecular Level: A Diagnostic Tool</title><author>Tobler, Samuel ; Köhler, Katja ; Sinha, Tanmay ; Hafen, Ernst ; Kapur, Manu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-12f1cf0954685af720fe332cd2f582eaa974be1d5038860f130dfec0629f71d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology</topic><topic>Concept Formation</topic><topic>Foreign Countries</topic><topic>General s and</topic><topic>Humans</topic><topic>Item Response Theory</topic><topic>Knowledge</topic><topic>Learning Processes</topic><topic>Misconceptions</topic><topic>Molecular Biology</topic><topic>Molecular Structure</topic><topic>Multiple Choice Tests</topic><topic>Protocol Analysis</topic><topic>Psychometrics</topic><topic>Science Instruction</topic><topic>Science Tests</topic><topic>Scientific Concepts</topic><topic>Stochastic processes</topic><topic>Student Evaluation</topic><topic>Students</topic><topic>Test Reliability</topic><topic>Test Validity</topic><topic>Transfer of Training</topic><topic>Undergraduate Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobler, Samuel</creatorcontrib><creatorcontrib>Köhler, Katja</creatorcontrib><creatorcontrib>Sinha, Tanmay</creatorcontrib><creatorcontrib>Hafen, Ernst</creatorcontrib><creatorcontrib>Kapur, Manu</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CBE - Life Sciences Education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobler, Samuel</au><au>Köhler, Katja</au><au>Sinha, Tanmay</au><au>Hafen, Ernst</au><au>Kapur, Manu</au><au>Couch, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1391343</ericid><atitle>Understanding Randomness on a Molecular Level: A Diagnostic Tool</atitle><jtitle>CBE - Life Sciences Education</jtitle><addtitle>CBE Life Sci Educ</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>ar17</spage><epage>ar17</epage><pages>ar17-ar17</pages><issn>1931-7913</issn><eissn>1931-7913</eissn><abstract>Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowledge to other contexts. Furthermore, elaborate tools to assess students' understanding of these stochastic processes are missing, despite the fundamental nature of this concept and the increasing evidence demonstrating its importance in biology. Thus, we developed the Molecular Randomness Concept Inventory (MRCI), an instrument composed of nine multiple-choice questions based on students' most prevalent misconceptions, to quantify students' understanding of stochastic processes in biological systems. The MRCI was administered to 67 first-year natural science students in Switzerland. The psychometric properties of the inventory were analyzed using classical test theory and Rasch modeling. Moreover, think-aloud interviews were conducted to ensure response validity. Results indicate that the MRCI yields valid and reliable estimations of students' conceptual understanding of molecular randomness in the higher educational setting studied. Ultimately, the performance analysis sheds light on the extent and the limitations of students' understanding of the concept of stochasticity on a molecular level.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>36862800</pmid><doi>10.1187/cbe.22-05-0097</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7913
ispartof CBE - Life Sciences Education, 2023-06, Vol.22 (2), p.ar17-ar17
issn 1931-7913
1931-7913
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10228260
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Biology
Concept Formation
Foreign Countries
General s and
Humans
Item Response Theory
Knowledge
Learning Processes
Misconceptions
Molecular Biology
Molecular Structure
Multiple Choice Tests
Protocol Analysis
Psychometrics
Science Instruction
Science Tests
Scientific Concepts
Stochastic processes
Student Evaluation
Students
Test Reliability
Test Validity
Transfer of Training
Undergraduate Students
title Understanding Randomness on a Molecular Level: A Diagnostic Tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Randomness%20on%20a%20Molecular%20Level:%20A%20Diagnostic%20Tool&rft.jtitle=CBE%20-%20Life%20Sciences%20Education&rft.au=Tobler,%20Samuel&rft.date=2023-06-01&rft.volume=22&rft.issue=2&rft.spage=ar17&rft.epage=ar17&rft.pages=ar17-ar17&rft.issn=1931-7913&rft.eissn=1931-7913&rft_id=info:doi/10.1187/cbe.22-05-0097&rft_dat=%3Cgale_pubme%3EA772537842%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783493388&rft_id=info:pmid/36862800&rft_galeid=A772537842&rft_ericid=EJ1391343&rfr_iscdi=true