Recent development in antiviral surfaces: Impact of topography and environmental conditions

The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-06, Vol.9 (6), p.e16698, Article e16698
Hauptverfasser: Tarannum, Tanjina, Ahmed, Shoeb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e16698
container_title Heliyon
container_volume 9
creator Tarannum, Tanjina
Ahmed, Shoeb
description The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
doi_str_mv 10.1016/j.heliyon.2023.e16698
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10227326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844023039051</els_id><sourcerecordid>2821642681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-c8d793cd4462c4cd82608ea88c30c14967f07a2dd3a1d47d3824eedf645b5b6d3</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaLYov4EZY9eWvO12dSLSPELCoLoyUNIk1mbspusybbQf-8urVpPnmZg3nvzZh5C5wSPCSbiajleQOU2wY8ppmwMRIiJPEBDynE-kpzjw71-gM5SWmKMSS7FpGDHaMAKKrCUfIjeX8CAbzMLa6hCU_e985n2rVu7qKssrWKpDaTr7KlutGmzUGZtaMJH1M1i0wFtBr6DBt9zO4IJ3rrWBZ9O0VGpqwRnu3qC3u7vXqePo9nzw9P0djYyXMh2ZKQtJsxYzgU13FjZewMtpWHYED4RRYkLTa1lmlheWCYpB7Cl4Pk8nwvLTtDNVrdZzWuw_T2dc9VEV-u4UUE79Xfi3UJ9hLUimNKCUdEpXO4UYvhcQWpV7ZKBqtIewiopKikRnApJOmi-hZoYUopQ_uwhWPXhqKXahaP6cNQ2nI53sW_yh_Udxe8V0L1q7SCqZBx4A9ZFMK2ywf2z4gsDiaZx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821642681</pqid></control><display><type>article</type><title>Recent development in antiviral surfaces: Impact of topography and environmental conditions</title><source>PubMed Central(OpenAccess)</source><source>Directory of Open Access Journals(OpenAccess)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Tarannum, Tanjina ; Ahmed, Shoeb</creator><creatorcontrib>Tarannum, Tanjina ; Ahmed, Shoeb</creatorcontrib><description>The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2023.e16698</identifier><identifier>PMID: 37260884</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antiviral surfaces ; Hydrophobicity ; Nanofabrication ; Porosity ; Review ; Surface topography</subject><ispartof>Heliyon, 2023-06, Vol.9 (6), p.e16698, Article e16698</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-c8d793cd4462c4cd82608ea88c30c14967f07a2dd3a1d47d3824eedf645b5b6d3</citedby><cites>FETCH-LOGICAL-c468t-c8d793cd4462c4cd82608ea88c30c14967f07a2dd3a1d47d3824eedf645b5b6d3</cites><orcidid>0000-0001-8215-5169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227326/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227326/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37260884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarannum, Tanjina</creatorcontrib><creatorcontrib>Ahmed, Shoeb</creatorcontrib><title>Recent development in antiviral surfaces: Impact of topography and environmental conditions</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.</description><subject>Antiviral surfaces</subject><subject>Hydrophobicity</subject><subject>Nanofabrication</subject><subject>Porosity</subject><subject>Review</subject><subject>Surface topography</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LAzEQDaLYov4EZY9eWvO12dSLSPELCoLoyUNIk1mbspusybbQf-8urVpPnmZg3nvzZh5C5wSPCSbiajleQOU2wY8ppmwMRIiJPEBDynE-kpzjw71-gM5SWmKMSS7FpGDHaMAKKrCUfIjeX8CAbzMLa6hCU_e985n2rVu7qKssrWKpDaTr7KlutGmzUGZtaMJH1M1i0wFtBr6DBt9zO4IJ3rrWBZ9O0VGpqwRnu3qC3u7vXqePo9nzw9P0djYyXMh2ZKQtJsxYzgU13FjZewMtpWHYED4RRYkLTa1lmlheWCYpB7Cl4Pk8nwvLTtDNVrdZzWuw_T2dc9VEV-u4UUE79Xfi3UJ9hLUimNKCUdEpXO4UYvhcQWpV7ZKBqtIewiopKikRnApJOmi-hZoYUopQ_uwhWPXhqKXahaP6cNQ2nI53sW_yh_Udxe8V0L1q7SCqZBx4A9ZFMK2ywf2z4gsDiaZx</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Tarannum, Tanjina</creator><creator>Ahmed, Shoeb</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8215-5169</orcidid></search><sort><creationdate>20230601</creationdate><title>Recent development in antiviral surfaces: Impact of topography and environmental conditions</title><author>Tarannum, Tanjina ; Ahmed, Shoeb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-c8d793cd4462c4cd82608ea88c30c14967f07a2dd3a1d47d3824eedf645b5b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiviral surfaces</topic><topic>Hydrophobicity</topic><topic>Nanofabrication</topic><topic>Porosity</topic><topic>Review</topic><topic>Surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarannum, Tanjina</creatorcontrib><creatorcontrib>Ahmed, Shoeb</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarannum, Tanjina</au><au>Ahmed, Shoeb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent development in antiviral surfaces: Impact of topography and environmental conditions</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>6</issue><spage>e16698</spage><pages>e16698-</pages><artnum>e16698</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37260884</pmid><doi>10.1016/j.heliyon.2023.e16698</doi><orcidid>https://orcid.org/0000-0001-8215-5169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2023-06, Vol.9 (6), p.e16698, Article e16698
issn 2405-8440
2405-8440
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10227326
source PubMed Central(OpenAccess); Directory of Open Access Journals(OpenAccess); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Antiviral surfaces
Hydrophobicity
Nanofabrication
Porosity
Review
Surface topography
title Recent development in antiviral surfaces: Impact of topography and environmental conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20development%20in%20antiviral%20surfaces:%20Impact%20of%20topography%20and%20environmental%20conditions&rft.jtitle=Heliyon&rft.au=Tarannum,%20Tanjina&rft.date=2023-06-01&rft.volume=9&rft.issue=6&rft.spage=e16698&rft.pages=e16698-&rft.artnum=e16698&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2023.e16698&rft_dat=%3Cproquest_pubme%3E2821642681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821642681&rft_id=info:pmid/37260884&rft_els_id=S2405844023039051&rfr_iscdi=true