Bioleaching Modeling-A Review

The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-05, Vol.16 (10), p.3812
Hauptverfasser: Saldaña, Manuel, Jeldres, Matías, Galleguillos Madrid, Felipe M, Gallegos, Sandra, Salazar, Iván, Robles, Pedro, Toro, Norman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 3812
container_title Materials
container_volume 16
creator Saldaña, Manuel
Jeldres, Matías
Galleguillos Madrid, Felipe M
Gallegos, Sandra
Salazar, Iván
Robles, Pedro
Toro, Norman
description The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.
doi_str_mv 10.3390/ma16103812
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750991810</galeid><sourcerecordid>A750991810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMottRevCsFLyJszdcmm5PU4hdUBNFzyGZn25TdTd3tVvz3prTWauaQYfLkzUxehE4JHjKm8HVpiCCYJYQeoC5RSkREcX64l3dQv2nmOCzGSELVMeowSTnhHHfR2a3zBRg7c9V08OwzKEISjQavsHLweYKOclM00N_uPfR-f_c2fowmLw9P49EkspyLZURioJbF3OYJFjgFniVUGC6FxCIXgto8VlKKVMaMpFxlksc5Bi6MNFbFClgP3Wx0F21aQmahWtam0Ivalab-0t44_fekcjM99StNMKU8FjIoXG4Vav_RQrPUpWssFIWpwLeNpgnFmPDQRUAv_qFz39ZVmC9Q6w9jQqlADTfU1BSgXZX78LANkUHprK8gd6E-kjFWiiTBgR662lywtW-aGvJd-wTrtVX616oAn-8PvEN_jGHfTdCKtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819443699</pqid></control><display><type>article</type><title>Bioleaching Modeling-A Review</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</creator><creatorcontrib>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</creatorcontrib><description>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16103812</identifier><identifier>PMID: 37241440</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Bacteria ; Bacterial leaching ; Bibliometrics ; Chile ; Comparative analysis ; Copper ; Energy conservation ; Energy costs ; Feasibility studies ; Laboratories ; Leaching ; Machine learning ; Metals ; Microorganisms ; Mineral processing ; Minerals ; Mining ; Modelling ; Oxidation ; Rare earth elements ; Rare earth metals ; Review ; Shrinking core model ; Statistical analysis</subject><ispartof>Materials, 2023-05, Vol.16 (10), p.3812</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</citedby><cites>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</cites><orcidid>0000-0002-1347-3726 ; 0000-0002-8312-7554 ; 0000-0003-4273-3563 ; 0000-0001-9265-1529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37241440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saldaña, Manuel</creatorcontrib><creatorcontrib>Jeldres, Matías</creatorcontrib><creatorcontrib>Galleguillos Madrid, Felipe M</creatorcontrib><creatorcontrib>Gallegos, Sandra</creatorcontrib><creatorcontrib>Salazar, Iván</creatorcontrib><creatorcontrib>Robles, Pedro</creatorcontrib><creatorcontrib>Toro, Norman</creatorcontrib><title>Bioleaching Modeling-A Review</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</description><subject>Algorithms</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Bibliometrics</subject><subject>Chile</subject><subject>Comparative analysis</subject><subject>Copper</subject><subject>Energy conservation</subject><subject>Energy costs</subject><subject>Feasibility studies</subject><subject>Laboratories</subject><subject>Leaching</subject><subject>Machine learning</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Mineral processing</subject><subject>Minerals</subject><subject>Mining</subject><subject>Modelling</subject><subject>Oxidation</subject><subject>Rare earth elements</subject><subject>Rare earth metals</subject><subject>Review</subject><subject>Shrinking core model</subject><subject>Statistical analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMottRevCsFLyJszdcmm5PU4hdUBNFzyGZn25TdTd3tVvz3prTWauaQYfLkzUxehE4JHjKm8HVpiCCYJYQeoC5RSkREcX64l3dQv2nmOCzGSELVMeowSTnhHHfR2a3zBRg7c9V08OwzKEISjQavsHLweYKOclM00N_uPfR-f_c2fowmLw9P49EkspyLZURioJbF3OYJFjgFniVUGC6FxCIXgto8VlKKVMaMpFxlksc5Bi6MNFbFClgP3Wx0F21aQmahWtam0Ivalab-0t44_fekcjM99StNMKU8FjIoXG4Vav_RQrPUpWssFIWpwLeNpgnFmPDQRUAv_qFz39ZVmC9Q6w9jQqlADTfU1BSgXZX78LANkUHprK8gd6E-kjFWiiTBgR662lywtW-aGvJd-wTrtVX616oAn-8PvEN_jGHfTdCKtQ</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Saldaña, Manuel</creator><creator>Jeldres, Matías</creator><creator>Galleguillos Madrid, Felipe M</creator><creator>Gallegos, Sandra</creator><creator>Salazar, Iván</creator><creator>Robles, Pedro</creator><creator>Toro, Norman</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1347-3726</orcidid><orcidid>https://orcid.org/0000-0002-8312-7554</orcidid><orcidid>https://orcid.org/0000-0003-4273-3563</orcidid><orcidid>https://orcid.org/0000-0001-9265-1529</orcidid></search><sort><creationdate>20230518</creationdate><title>Bioleaching Modeling-A Review</title><author>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Bibliometrics</topic><topic>Chile</topic><topic>Comparative analysis</topic><topic>Copper</topic><topic>Energy conservation</topic><topic>Energy costs</topic><topic>Feasibility studies</topic><topic>Laboratories</topic><topic>Leaching</topic><topic>Machine learning</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Mineral processing</topic><topic>Minerals</topic><topic>Mining</topic><topic>Modelling</topic><topic>Oxidation</topic><topic>Rare earth elements</topic><topic>Rare earth metals</topic><topic>Review</topic><topic>Shrinking core model</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saldaña, Manuel</creatorcontrib><creatorcontrib>Jeldres, Matías</creatorcontrib><creatorcontrib>Galleguillos Madrid, Felipe M</creatorcontrib><creatorcontrib>Gallegos, Sandra</creatorcontrib><creatorcontrib>Salazar, Iván</creatorcontrib><creatorcontrib>Robles, Pedro</creatorcontrib><creatorcontrib>Toro, Norman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saldaña, Manuel</au><au>Jeldres, Matías</au><au>Galleguillos Madrid, Felipe M</au><au>Gallegos, Sandra</au><au>Salazar, Iván</au><au>Robles, Pedro</au><au>Toro, Norman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioleaching Modeling-A Review</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>3812</spage><pages>3812-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37241440</pmid><doi>10.3390/ma16103812</doi><orcidid>https://orcid.org/0000-0002-1347-3726</orcidid><orcidid>https://orcid.org/0000-0002-8312-7554</orcidid><orcidid>https://orcid.org/0000-0003-4273-3563</orcidid><orcidid>https://orcid.org/0000-0001-9265-1529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-05, Vol.16 (10), p.3812
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224567
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Bacteria
Bacterial leaching
Bibliometrics
Chile
Comparative analysis
Copper
Energy conservation
Energy costs
Feasibility studies
Laboratories
Leaching
Machine learning
Metals
Microorganisms
Mineral processing
Minerals
Mining
Modelling
Oxidation
Rare earth elements
Rare earth metals
Review
Shrinking core model
Statistical analysis
title Bioleaching Modeling-A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioleaching%20Modeling-A%20Review&rft.jtitle=Materials&rft.au=Salda%C3%B1a,%20Manuel&rft.date=2023-05-18&rft.volume=16&rft.issue=10&rft.spage=3812&rft.pages=3812-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16103812&rft_dat=%3Cgale_pubme%3EA750991810%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819443699&rft_id=info:pmid/37241440&rft_galeid=A750991810&rfr_iscdi=true