Bioleaching Modeling-A Review
The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral t...
Gespeichert in:
Veröffentlicht in: | Materials 2023-05, Vol.16 (10), p.3812 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 3812 |
container_title | Materials |
container_volume | 16 |
creator | Saldaña, Manuel Jeldres, Matías Galleguillos Madrid, Felipe M Gallegos, Sandra Salazar, Iván Robles, Pedro Toro, Norman |
description | The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods. |
doi_str_mv | 10.3390/ma16103812 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750991810</galeid><sourcerecordid>A750991810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMottRevCsFLyJszdcmm5PU4hdUBNFzyGZn25TdTd3tVvz3prTWauaQYfLkzUxehE4JHjKm8HVpiCCYJYQeoC5RSkREcX64l3dQv2nmOCzGSELVMeowSTnhHHfR2a3zBRg7c9V08OwzKEISjQavsHLweYKOclM00N_uPfR-f_c2fowmLw9P49EkspyLZURioJbF3OYJFjgFniVUGC6FxCIXgto8VlKKVMaMpFxlksc5Bi6MNFbFClgP3Wx0F21aQmahWtam0Ivalab-0t44_fekcjM99StNMKU8FjIoXG4Vav_RQrPUpWssFIWpwLeNpgnFmPDQRUAv_qFz39ZVmC9Q6w9jQqlADTfU1BSgXZX78LANkUHprK8gd6E-kjFWiiTBgR662lywtW-aGvJd-wTrtVX616oAn-8PvEN_jGHfTdCKtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819443699</pqid></control><display><type>article</type><title>Bioleaching Modeling-A Review</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</creator><creatorcontrib>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</creatorcontrib><description>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16103812</identifier><identifier>PMID: 37241440</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Bacteria ; Bacterial leaching ; Bibliometrics ; Chile ; Comparative analysis ; Copper ; Energy conservation ; Energy costs ; Feasibility studies ; Laboratories ; Leaching ; Machine learning ; Metals ; Microorganisms ; Mineral processing ; Minerals ; Mining ; Modelling ; Oxidation ; Rare earth elements ; Rare earth metals ; Review ; Shrinking core model ; Statistical analysis</subject><ispartof>Materials, 2023-05, Vol.16 (10), p.3812</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</citedby><cites>FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</cites><orcidid>0000-0002-1347-3726 ; 0000-0002-8312-7554 ; 0000-0003-4273-3563 ; 0000-0001-9265-1529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37241440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saldaña, Manuel</creatorcontrib><creatorcontrib>Jeldres, Matías</creatorcontrib><creatorcontrib>Galleguillos Madrid, Felipe M</creatorcontrib><creatorcontrib>Gallegos, Sandra</creatorcontrib><creatorcontrib>Salazar, Iván</creatorcontrib><creatorcontrib>Robles, Pedro</creatorcontrib><creatorcontrib>Toro, Norman</creatorcontrib><title>Bioleaching Modeling-A Review</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</description><subject>Algorithms</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Bibliometrics</subject><subject>Chile</subject><subject>Comparative analysis</subject><subject>Copper</subject><subject>Energy conservation</subject><subject>Energy costs</subject><subject>Feasibility studies</subject><subject>Laboratories</subject><subject>Leaching</subject><subject>Machine learning</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Mineral processing</subject><subject>Minerals</subject><subject>Mining</subject><subject>Modelling</subject><subject>Oxidation</subject><subject>Rare earth elements</subject><subject>Rare earth metals</subject><subject>Review</subject><subject>Shrinking core model</subject><subject>Statistical analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMottRevCsFLyJszdcmm5PU4hdUBNFzyGZn25TdTd3tVvz3prTWauaQYfLkzUxehE4JHjKm8HVpiCCYJYQeoC5RSkREcX64l3dQv2nmOCzGSELVMeowSTnhHHfR2a3zBRg7c9V08OwzKEISjQavsHLweYKOclM00N_uPfR-f_c2fowmLw9P49EkspyLZURioJbF3OYJFjgFniVUGC6FxCIXgto8VlKKVMaMpFxlksc5Bi6MNFbFClgP3Wx0F21aQmahWtam0Ivalab-0t44_fekcjM99StNMKU8FjIoXG4Vav_RQrPUpWssFIWpwLeNpgnFmPDQRUAv_qFz39ZVmC9Q6w9jQqlADTfU1BSgXZX78LANkUHprK8gd6E-kjFWiiTBgR662lywtW-aGvJd-wTrtVX616oAn-8PvEN_jGHfTdCKtQ</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Saldaña, Manuel</creator><creator>Jeldres, Matías</creator><creator>Galleguillos Madrid, Felipe M</creator><creator>Gallegos, Sandra</creator><creator>Salazar, Iván</creator><creator>Robles, Pedro</creator><creator>Toro, Norman</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1347-3726</orcidid><orcidid>https://orcid.org/0000-0002-8312-7554</orcidid><orcidid>https://orcid.org/0000-0003-4273-3563</orcidid><orcidid>https://orcid.org/0000-0001-9265-1529</orcidid></search><sort><creationdate>20230518</creationdate><title>Bioleaching Modeling-A Review</title><author>Saldaña, Manuel ; Jeldres, Matías ; Galleguillos Madrid, Felipe M ; Gallegos, Sandra ; Salazar, Iván ; Robles, Pedro ; Toro, Norman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-15e2c354cf8060be4d826a476706f662cf59776b7531b49d745f0e46a7ac959e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Bibliometrics</topic><topic>Chile</topic><topic>Comparative analysis</topic><topic>Copper</topic><topic>Energy conservation</topic><topic>Energy costs</topic><topic>Feasibility studies</topic><topic>Laboratories</topic><topic>Leaching</topic><topic>Machine learning</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Mineral processing</topic><topic>Minerals</topic><topic>Mining</topic><topic>Modelling</topic><topic>Oxidation</topic><topic>Rare earth elements</topic><topic>Rare earth metals</topic><topic>Review</topic><topic>Shrinking core model</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saldaña, Manuel</creatorcontrib><creatorcontrib>Jeldres, Matías</creatorcontrib><creatorcontrib>Galleguillos Madrid, Felipe M</creatorcontrib><creatorcontrib>Gallegos, Sandra</creatorcontrib><creatorcontrib>Salazar, Iván</creatorcontrib><creatorcontrib>Robles, Pedro</creatorcontrib><creatorcontrib>Toro, Norman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saldaña, Manuel</au><au>Jeldres, Matías</au><au>Galleguillos Madrid, Felipe M</au><au>Gallegos, Sandra</au><au>Salazar, Iván</au><au>Robles, Pedro</au><au>Toro, Norman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioleaching Modeling-A Review</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>3812</spage><pages>3812-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37241440</pmid><doi>10.3390/ma16103812</doi><orcidid>https://orcid.org/0000-0002-1347-3726</orcidid><orcidid>https://orcid.org/0000-0002-8312-7554</orcidid><orcidid>https://orcid.org/0000-0003-4273-3563</orcidid><orcidid>https://orcid.org/0000-0001-9265-1529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-05, Vol.16 (10), p.3812 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224567 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Bacteria Bacterial leaching Bibliometrics Chile Comparative analysis Copper Energy conservation Energy costs Feasibility studies Laboratories Leaching Machine learning Metals Microorganisms Mineral processing Minerals Mining Modelling Oxidation Rare earth elements Rare earth metals Review Shrinking core model Statistical analysis |
title | Bioleaching Modeling-A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioleaching%20Modeling-A%20Review&rft.jtitle=Materials&rft.au=Salda%C3%B1a,%20Manuel&rft.date=2023-05-18&rft.volume=16&rft.issue=10&rft.spage=3812&rft.pages=3812-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16103812&rft_dat=%3Cgale_pubme%3EA750991810%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819443699&rft_id=info:pmid/37241440&rft_galeid=A750991810&rfr_iscdi=true |