Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis
Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino ac...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2000-12, Vol.12 (12), p.2395-2408 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2408 |
---|---|
container_issue | 12 |
container_start_page | 2395 |
container_title | The Plant cell |
container_volume | 12 |
creator | Lasswell, Jamie Rogg, Luise E. Nelson, David C. Rongey, Catherine Bartel, Bonnie |
description | Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino acid conjugates but remains sensitive to free IAA. iar1 partially suppresses phenotypes of a mutant that overproduces IAA, suggesting that IAR1 participates in auxin metabolism or response. We used positional information to clone IAR1, which encodes a novel protein with seven predicted transmembrane domains and several His-rich regions. IAR1 has homologs in other multicellular organisms, including Drosophila, nematodes, and mammals; in addition, the mouse homolog KE4 can functionally substitute for IAR1 in vivo. IAR1 also structurally resembles and has detectable sequence similarity to a family of metal transporters. We discuss several possible roles for IAR1 in auxin homeostasis. |
doi_str_mv | 10.1105/tpc.12.12.2395 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_102226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3871237</jstor_id><sourcerecordid>3871237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-19ac3e84d7fff3cadcf928be67952b8838407f409d3ab649934a6b83e3f036c83</originalsourceid><addsrcrecordid>eNqFkcFrFDEYxQdRbK1ePUoQ8eSs-ZKZSXLoYRm0FgpCVfAWMplkm2U22SaZYv3rzbCLVi_CBwl8v_d4yauql4BXALh9n_d6BWQZQkX7qDqFlpKaCP79cbnjBtdN18JJ9SylLcYYGIin1QkANJzw7rQa-yl45zdI-RH1NyoqnU10P1V2waNg0eX6Gt4hhS6MN-ja3M4umhHZENF6_uE86oPfzhuVDfpifHLZ3bl8j8piHdXgxrBPLj2vnlg1JfPieJ5V3z5--Np_qq8-X1z266tat4zkGoTS1PBmZNZaqtWorSB8MB0TLRk4p7zBzDZYjFQNXSMEbVQ3cGqoxbTTnJ5V5wff_TzszKiNz1FNch_dTsV7GZSTf2-8u5GbcCcBE0K6on971MdwO5uU5c4lbaZJeRPmJBlpKYaG_hcExoFQLAr4-h9wG-boyydIApy1LfDFbXWAdAwpRWN_JwYsl5ZlaVkCWWZpuQhePXznH_xYawHeHIBtyiE-tCupmKSclXiM_gIG4K8H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218755183</pqid></control><display><type>article</type><title>Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lasswell, Jamie ; Rogg, Luise E. ; Nelson, David C. ; Rongey, Catherine ; Bartel, Bonnie</creator><creatorcontrib>Lasswell, Jamie ; Rogg, Luise E. ; Nelson, David C. ; Rongey, Catherine ; Bartel, Bonnie</creatorcontrib><description>Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino acid conjugates but remains sensitive to free IAA. iar1 partially suppresses phenotypes of a mutant that overproduces IAA, suggesting that IAR1 participates in auxin metabolism or response. We used positional information to clone IAR1, which encodes a novel protein with seven predicted transmembrane domains and several His-rich regions. IAR1 has homologs in other multicellular organisms, including Drosophila, nematodes, and mammals; in addition, the mouse homolog KE4 can functionally substitute for IAR1 in vivo. IAR1 also structurally resembles and has detectable sequence similarity to a family of metal transporters. We discuss several possible roles for IAR1 in auxin homeostasis.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.12.12.2395</identifier><identifier>PMID: 11148286</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>Acetic acid ; Amino Acid Sequence ; Amino acids ; Animals ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins ; Auxins ; Cloning ; Cloning, Molecular ; Complementary DNA ; DNA, Complementary ; Genetic mutation ; IAR1 gene ; indole-3-acetic acid ; Indoleacetic Acids - metabolism ; Ketchup ; Manganese - pharmacology ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins - genetics ; Peptides ; Phenotype ; Phenotypes ; Plant cells ; Plants ; Sequence Homology, Amino Acid ; Yeasts ; Zinc</subject><ispartof>The Plant cell, 2000-12, Vol.12 (12), p.2395-2408</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>Copyright American Society of Plant Physiologists Dec 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-19ac3e84d7fff3cadcf928be67952b8838407f409d3ab649934a6b83e3f036c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3871237$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3871237$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11148286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasswell, Jamie</creatorcontrib><creatorcontrib>Rogg, Luise E.</creatorcontrib><creatorcontrib>Nelson, David C.</creatorcontrib><creatorcontrib>Rongey, Catherine</creatorcontrib><creatorcontrib>Bartel, Bonnie</creatorcontrib><title>Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino acid conjugates but remains sensitive to free IAA. iar1 partially suppresses phenotypes of a mutant that overproduces IAA, suggesting that IAR1 participates in auxin metabolism or response. We used positional information to clone IAR1, which encodes a novel protein with seven predicted transmembrane domains and several His-rich regions. IAR1 has homologs in other multicellular organisms, including Drosophila, nematodes, and mammals; in addition, the mouse homolog KE4 can functionally substitute for IAR1 in vivo. IAR1 also structurally resembles and has detectable sequence similarity to a family of metal transporters. We discuss several possible roles for IAR1 in auxin homeostasis.</description><subject>Acetic acid</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins</subject><subject>Auxins</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>DNA, Complementary</subject><subject>Genetic mutation</subject><subject>IAR1 gene</subject><subject>indole-3-acetic acid</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Ketchup</subject><subject>Manganese - pharmacology</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Peptides</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Sequence Homology, Amino Acid</subject><subject>Yeasts</subject><subject>Zinc</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcFrFDEYxQdRbK1ePUoQ8eSs-ZKZSXLoYRm0FgpCVfAWMplkm2U22SaZYv3rzbCLVi_CBwl8v_d4yauql4BXALh9n_d6BWQZQkX7qDqFlpKaCP79cbnjBtdN18JJ9SylLcYYGIin1QkANJzw7rQa-yl45zdI-RH1NyoqnU10P1V2waNg0eX6Gt4hhS6MN-ja3M4umhHZENF6_uE86oPfzhuVDfpifHLZ3bl8j8piHdXgxrBPLj2vnlg1JfPieJ5V3z5--Np_qq8-X1z266tat4zkGoTS1PBmZNZaqtWorSB8MB0TLRk4p7zBzDZYjFQNXSMEbVQ3cGqoxbTTnJ5V5wff_TzszKiNz1FNch_dTsV7GZSTf2-8u5GbcCcBE0K6on971MdwO5uU5c4lbaZJeRPmJBlpKYaG_hcExoFQLAr4-h9wG-boyydIApy1LfDFbXWAdAwpRWN_JwYsl5ZlaVkCWWZpuQhePXznH_xYawHeHIBtyiE-tCupmKSclXiM_gIG4K8H</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Lasswell, Jamie</creator><creator>Rogg, Luise E.</creator><creator>Nelson, David C.</creator><creator>Rongey, Catherine</creator><creator>Bartel, Bonnie</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001201</creationdate><title>Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis</title><author>Lasswell, Jamie ; Rogg, Luise E. ; Nelson, David C. ; Rongey, Catherine ; Bartel, Bonnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-19ac3e84d7fff3cadcf928be67952b8838407f409d3ab649934a6b83e3f036c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acetic acid</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins</topic><topic>Auxins</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>DNA, Complementary</topic><topic>Genetic mutation</topic><topic>IAR1 gene</topic><topic>indole-3-acetic acid</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Ketchup</topic><topic>Manganese - pharmacology</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Peptides</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Sequence Homology, Amino Acid</topic><topic>Yeasts</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasswell, Jamie</creatorcontrib><creatorcontrib>Rogg, Luise E.</creatorcontrib><creatorcontrib>Nelson, David C.</creatorcontrib><creatorcontrib>Rongey, Catherine</creatorcontrib><creatorcontrib>Bartel, Bonnie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasswell, Jamie</au><au>Rogg, Luise E.</au><au>Nelson, David C.</au><au>Rongey, Catherine</au><au>Bartel, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2000-12-01</date><risdate>2000</risdate><volume>12</volume><issue>12</issue><spage>2395</spage><epage>2408</epage><pages>2395-2408</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Most indole-3-acetic acid (IAA) in higher plants is conjugated to amino acids, sugars, or peptides, and these conjugates are implicated in regulating the concentration of the free hormone. We identified iar1 as an Arabidopsis mutant that is resistant to the inhibitory effects of several IAA-amino acid conjugates but remains sensitive to free IAA. iar1 partially suppresses phenotypes of a mutant that overproduces IAA, suggesting that IAR1 participates in auxin metabolism or response. We used positional information to clone IAR1, which encodes a novel protein with seven predicted transmembrane domains and several His-rich regions. IAR1 has homologs in other multicellular organisms, including Drosophila, nematodes, and mammals; in addition, the mouse homolog KE4 can functionally substitute for IAR1 in vivo. IAR1 also structurally resembles and has detectable sequence similarity to a family of metal transporters. We discuss several possible roles for IAR1 in auxin homeostasis.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>11148286</pmid><doi>10.1105/tpc.12.12.2395</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2000-12, Vol.12 (12), p.2395-2408 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_102226 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetic acid Amino Acid Sequence Amino acids Animals Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins Auxins Cloning Cloning, Molecular Complementary DNA DNA, Complementary Genetic mutation IAR1 gene indole-3-acetic acid Indoleacetic Acids - metabolism Ketchup Manganese - pharmacology Membrane Proteins - chemistry Membrane Proteins - genetics Mice Molecular Sequence Data Nerve Tissue Proteins - genetics Peptides Phenotype Phenotypes Plant cells Plants Sequence Homology, Amino Acid Yeasts Zinc |
title | Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20and%20Characterization%20of%20IAR1,%20a%20Gene%20Required%20for%20Auxin%20Conjugate%20Sensitivity%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Lasswell,%20Jamie&rft.date=2000-12-01&rft.volume=12&rft.issue=12&rft.spage=2395&rft.epage=2408&rft.pages=2395-2408&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.12.12.2395&rft_dat=%3Cjstor_pubme%3E3871237%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218755183&rft_id=info:pmid/11148286&rft_jstor_id=3871237&rfr_iscdi=true |