Vascularized organ bioprinting: From strategy to paradigm
Over the past two decades, 3D bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organs in vitro. However, transitioning from bioprinting of simple tissue models to real biomedical applications is still a challenge due to in...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2023-05, Vol.56 (5), p.e13453-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | e13453 |
container_title | Cell proliferation |
container_volume | 56 |
creator | Wang, Heran Liu, Xin Gu, Qi Zheng, Xiongfei |
description | Over the past two decades, 3D bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organs in vitro. However, transitioning from bioprinting of simple tissue models to real biomedical applications is still a challenge due to incomplete interdisciplinary theoretical knowledge and imperfect multi‐technology integration. This review examines the goals of vasculature manufacturing and proposes new strategic objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top‐down reconstruction (bioprinting) and bottom‐up regeneration (cellular behaviour). We also provide an in‐depth analysis of the four aspects of design, ink, printing and culture. Furthermore, we present the ‘construction‐comprehension cycle’ research paradigm and the ‘math‐model‐based batch insights generator’ research paradigm for the future, which may have the potential to revolutionize the biomedical field.
This review examines the goals of vasculature manufacturing and suggests the objectives in three stages. Then, we outline a bidirectional manufacturing strategy through top‐down reproduction (bioprinting) and bottom‐up regeneration (cellular behaviour). Next, we introduce the views in detail from four links: design, ink, printing and culture. Furthermore, we present the ‘constructing‐comprehension cycle’ research paradigm in Strategic Priority Research Program (SPRP) and the ‘math‐model‐based batch insights generator’ research paradigm for the future with the potential to revolutionize the biomedical field. This review summarizes and distils the research results and ideas of the SPRP in the field of in vitro organ reconstruction and manufacturing. Unlike the common reviews in this field, this paper presents fresh ideas, highlights overlooked issues, corrects some misconceptions and points out future research directions. |
doi_str_mv | 10.1111/cpr.13453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810919946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5143-95128a356a740803a51ff19981d722b609241ae94bf9e0f3fe1ea1d12d0024d73</originalsourceid><addsrcrecordid>eNp1kU1LwzAch4Mobk4PfgEpeNFDNf-8tI0XkeFUEBRRryFr05rRNjNplfnpjW6KCuaSQx4envBDaBfwEYRznM_dEVDG6RoaAk14TCBj62iIRYLjNCVkgLa8n2EMFNJkEw1oIohIUj5E4lH5vK-VM2-6iKyrVBtNjZ0703amrU6iibNN5DunOl0tos5Gc-VUYapmG22UqvZ6Z3WP0MPk_H58GV_fXFyNz67jnAOjseBAMkV5olKGM0wVh7IEITIoQtg0wYIwUFqwaSk0LmmpQSsogBQYE1akdIROl955P210kes2xNQyFDbKLaRVRv5-ac2TrOyLBEyApADBcLAyOPvca9_Jxvhc17Vqte29JBlgEZJYEtD9P-jM9q4N__ugBGBGOA_U4ZLKnfXe6fK7BrD8WESGReTnIoHd-5n_TX5NEIDjJfBqar343yTHt3dL5TskTJQW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819104255</pqid></control><display><type>article</type><title>Vascularized organ bioprinting: From strategy to paradigm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Wang, Heran ; Liu, Xin ; Gu, Qi ; Zheng, Xiongfei</creator><creatorcontrib>Wang, Heran ; Liu, Xin ; Gu, Qi ; Zheng, Xiongfei</creatorcontrib><description>Over the past two decades, 3D bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organs in vitro. However, transitioning from bioprinting of simple tissue models to real biomedical applications is still a challenge due to incomplete interdisciplinary theoretical knowledge and imperfect multi‐technology integration. This review examines the goals of vasculature manufacturing and proposes new strategic objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top‐down reconstruction (bioprinting) and bottom‐up regeneration (cellular behaviour). We also provide an in‐depth analysis of the four aspects of design, ink, printing and culture. Furthermore, we present the ‘construction‐comprehension cycle’ research paradigm and the ‘math‐model‐based batch insights generator’ research paradigm for the future, which may have the potential to revolutionize the biomedical field.
This review examines the goals of vasculature manufacturing and suggests the objectives in three stages. Then, we outline a bidirectional manufacturing strategy through top‐down reproduction (bioprinting) and bottom‐up regeneration (cellular behaviour). Next, we introduce the views in detail from four links: design, ink, printing and culture. Furthermore, we present the ‘constructing‐comprehension cycle’ research paradigm in Strategic Priority Research Program (SPRP) and the ‘math‐model‐based batch insights generator’ research paradigm for the future with the potential to revolutionize the biomedical field. This review summarizes and distils the research results and ideas of the SPRP in the field of in vitro organ reconstruction and manufacturing. Unlike the common reviews in this field, this paper presents fresh ideas, highlights overlooked issues, corrects some misconceptions and points out future research directions.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.13453</identifier><identifier>PMID: 36929675</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Angiogenesis ; Bioengineering ; Biomedical materials ; Bioprinting ; Blood vessels ; Cell culture ; Growth factors ; Manufacturing ; Morphogenesis ; Morphology ; Printing, Three-Dimensional ; Review ; Strategy ; Three dimensional printing ; Tissue Engineering</subject><ispartof>Cell proliferation, 2023-05, Vol.56 (5), p.e13453-n/a</ispartof><rights>2023 The Authors. published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.</rights><rights>2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5143-95128a356a740803a51ff19981d722b609241ae94bf9e0f3fe1ea1d12d0024d73</citedby><cites>FETCH-LOGICAL-c5143-95128a356a740803a51ff19981d722b609241ae94bf9e0f3fe1ea1d12d0024d73</cites><orcidid>0000-0003-3321-4438 ; 0000-0002-5334-6457 ; 0000-0001-9756-1119 ; 0000-0001-9387-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212711/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212711/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36929675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Heran</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Gu, Qi</creatorcontrib><creatorcontrib>Zheng, Xiongfei</creatorcontrib><title>Vascularized organ bioprinting: From strategy to paradigm</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Over the past two decades, 3D bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organs in vitro. However, transitioning from bioprinting of simple tissue models to real biomedical applications is still a challenge due to incomplete interdisciplinary theoretical knowledge and imperfect multi‐technology integration. This review examines the goals of vasculature manufacturing and proposes new strategic objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top‐down reconstruction (bioprinting) and bottom‐up regeneration (cellular behaviour). We also provide an in‐depth analysis of the four aspects of design, ink, printing and culture. Furthermore, we present the ‘construction‐comprehension cycle’ research paradigm and the ‘math‐model‐based batch insights generator’ research paradigm for the future, which may have the potential to revolutionize the biomedical field.
This review examines the goals of vasculature manufacturing and suggests the objectives in three stages. Then, we outline a bidirectional manufacturing strategy through top‐down reproduction (bioprinting) and bottom‐up regeneration (cellular behaviour). Next, we introduce the views in detail from four links: design, ink, printing and culture. Furthermore, we present the ‘constructing‐comprehension cycle’ research paradigm in Strategic Priority Research Program (SPRP) and the ‘math‐model‐based batch insights generator’ research paradigm for the future with the potential to revolutionize the biomedical field. This review summarizes and distils the research results and ideas of the SPRP in the field of in vitro organ reconstruction and manufacturing. Unlike the common reviews in this field, this paper presents fresh ideas, highlights overlooked issues, corrects some misconceptions and points out future research directions.</description><subject>Angiogenesis</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Bioprinting</subject><subject>Blood vessels</subject><subject>Cell culture</subject><subject>Growth factors</subject><subject>Manufacturing</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Printing, Three-Dimensional</subject><subject>Review</subject><subject>Strategy</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LwzAch4Mobk4PfgEpeNFDNf-8tI0XkeFUEBRRryFr05rRNjNplfnpjW6KCuaSQx4envBDaBfwEYRznM_dEVDG6RoaAk14TCBj62iIRYLjNCVkgLa8n2EMFNJkEw1oIohIUj5E4lH5vK-VM2-6iKyrVBtNjZ0703amrU6iibNN5DunOl0tos5Gc-VUYapmG22UqvZ6Z3WP0MPk_H58GV_fXFyNz67jnAOjseBAMkV5olKGM0wVh7IEITIoQtg0wYIwUFqwaSk0LmmpQSsogBQYE1akdIROl955P210kes2xNQyFDbKLaRVRv5-ac2TrOyLBEyApADBcLAyOPvca9_Jxvhc17Vqte29JBlgEZJYEtD9P-jM9q4N__ugBGBGOA_U4ZLKnfXe6fK7BrD8WESGReTnIoHd-5n_TX5NEIDjJfBqar343yTHt3dL5TskTJQW</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wang, Heran</creator><creator>Liu, Xin</creator><creator>Gu, Qi</creator><creator>Zheng, Xiongfei</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3321-4438</orcidid><orcidid>https://orcid.org/0000-0002-5334-6457</orcidid><orcidid>https://orcid.org/0000-0001-9756-1119</orcidid><orcidid>https://orcid.org/0000-0001-9387-9525</orcidid></search><sort><creationdate>202305</creationdate><title>Vascularized organ bioprinting: From strategy to paradigm</title><author>Wang, Heran ; Liu, Xin ; Gu, Qi ; Zheng, Xiongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5143-95128a356a740803a51ff19981d722b609241ae94bf9e0f3fe1ea1d12d0024d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Bioprinting</topic><topic>Blood vessels</topic><topic>Cell culture</topic><topic>Growth factors</topic><topic>Manufacturing</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Printing, Three-Dimensional</topic><topic>Review</topic><topic>Strategy</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Heran</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Gu, Qi</creatorcontrib><creatorcontrib>Zheng, Xiongfei</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Heran</au><au>Liu, Xin</au><au>Gu, Qi</au><au>Zheng, Xiongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularized organ bioprinting: From strategy to paradigm</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2023-05</date><risdate>2023</risdate><volume>56</volume><issue>5</issue><spage>e13453</spage><epage>n/a</epage><pages>e13453-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Over the past two decades, 3D bioprinting has become a popular research topic worldwide, as it is the most promising approach for manufacturing vascularized organs in vitro. However, transitioning from bioprinting of simple tissue models to real biomedical applications is still a challenge due to incomplete interdisciplinary theoretical knowledge and imperfect multi‐technology integration. This review examines the goals of vasculature manufacturing and proposes new strategic objectives in three stages. We then outline a bidirectional manufacturing strategy consisting of top‐down reconstruction (bioprinting) and bottom‐up regeneration (cellular behaviour). We also provide an in‐depth analysis of the four aspects of design, ink, printing and culture. Furthermore, we present the ‘construction‐comprehension cycle’ research paradigm and the ‘math‐model‐based batch insights generator’ research paradigm for the future, which may have the potential to revolutionize the biomedical field.
This review examines the goals of vasculature manufacturing and suggests the objectives in three stages. Then, we outline a bidirectional manufacturing strategy through top‐down reproduction (bioprinting) and bottom‐up regeneration (cellular behaviour). Next, we introduce the views in detail from four links: design, ink, printing and culture. Furthermore, we present the ‘constructing‐comprehension cycle’ research paradigm in Strategic Priority Research Program (SPRP) and the ‘math‐model‐based batch insights generator’ research paradigm for the future with the potential to revolutionize the biomedical field. This review summarizes and distils the research results and ideas of the SPRP in the field of in vitro organ reconstruction and manufacturing. Unlike the common reviews in this field, this paper presents fresh ideas, highlights overlooked issues, corrects some misconceptions and points out future research directions.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>36929675</pmid><doi>10.1111/cpr.13453</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3321-4438</orcidid><orcidid>https://orcid.org/0000-0002-5334-6457</orcidid><orcidid>https://orcid.org/0000-0001-9756-1119</orcidid><orcidid>https://orcid.org/0000-0001-9387-9525</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7722 |
ispartof | Cell proliferation, 2023-05, Vol.56 (5), p.e13453-n/a |
issn | 0960-7722 1365-2184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212711 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Angiogenesis Bioengineering Biomedical materials Bioprinting Blood vessels Cell culture Growth factors Manufacturing Morphogenesis Morphology Printing, Three-Dimensional Review Strategy Three dimensional printing Tissue Engineering |
title | Vascularized organ bioprinting: From strategy to paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularized%20organ%20bioprinting:%20From%20strategy%20to%20paradigm&rft.jtitle=Cell%20proliferation&rft.au=Wang,%20Heran&rft.date=2023-05&rft.volume=56&rft.issue=5&rft.spage=e13453&rft.epage=n/a&rft.pages=e13453-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.13453&rft_dat=%3Cproquest_pubme%3E2810919946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819104255&rft_id=info:pmid/36929675&rfr_iscdi=true |