m6A promotes planarian regeneration
Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole‐body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineat...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2023-05, Vol.56 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Cell proliferation |
container_volume | 56 |
creator | Cui, Guanshen Zhou, Jia‐Yi Ge, Xin‐Yang Sun, Bao‐Fa Song, Ge‐Ge Wang, Xing Wang, Xiu‐Zhi Zhang, Rui Wang, Hai‐Lin Jing, Qing Koziol, Magdalena J. Zhao, Yong‐Liang Zeng, An Zhang, Wei‐Qi Han, Da‐Li Yang, Yun‐Gui Yang, Ying |
description | Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole‐body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6‐methyladenosine (m6A) modification participates in many biological processes, including stem cell self‐renewal and differentiation, in particular the regeneration of haematopoietic stem cells and axons. However, how m6A controls regeneration at the whole‐organism level remains largely unknown. Here, we demonstrate that the depletion of m6A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell–cell communication and cell cycle. Single‐cell RNA‐seq (scRNA‐seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor‐like cells (NP‐like cells), characterized by specific expression of the cell–cell communication ligand grn. Intriguingly, the depletion of m6A‐modified transcripts grn, cdk9 or cdk7 partially rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6A modification in regulating whole‐organism regeneration.
As depicted in our model, during planarian homeostasis, the expression level of grn is held at a moderate level to inhibit overgrowth, as equivalent to grn expression level before amputation at 0 hpa. Upon injury, m6A modification selectively targets several important gene transcripts, including grn for degradation, manifested as its reduced expression level after 6 hpa, as well as transcripts of cell cycle‐related genes including ccnt1, cdk7 and cdk9. m6A‐mediated downregulation of these genes, especially the grn, may halt the initial proliferation of the stem cell pool at the first stage of regeneration, which in turn promotes their differentiation process, including the differentiation of neoblasts to the progenitor cells and eventually to different tissue types. After wtap knockdown, grn transcript accumulates to form a unique cell cluster resulting in increased GRN secretion, which may lead to cell cycle dysregulation and the loss of neoblast differentiation and the failure of planarian regeneration. |
doi_str_mv | 10.1111/cpr.13481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819104110</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2441-3c916687f3dc61d2f949b7dc1bb99e7a3415ce511fe048854c6d492d3c565eb3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk4v_AeDXXfLSdJ8XMkYToWBIrsPaZrOjjapaavs31u3IXhuzoH35eHwIHQPeA7DLGwT50CZhAs0BsrThIBkl2iMFceJEISM0E3b7jEGCoJfoxEVWDIGcoxmNV9Omxjq0Ll22lTGm1gaP41u57yLpiuDv0VXhalad3feE7RdP25Xz8nm9elltdwkDRlgCbUKOJeioLnlkJNCMZWJ3EKWKeWEoQxS61KAwmEmZcosz5kiObUpT11GJ-jhhG36rHa5db6LptJNLGsTDzqYUv9PfPmhd-FLAyZABOCBMDsTYvjsXdvpfeijH37WRIICzODYWpxa32XlDn98wPpXph5k6qNMvXp7Px70B92yZss</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819104110</pqid></control><display><type>article</type><title>m6A promotes planarian regeneration</title><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Cui, Guanshen ; Zhou, Jia‐Yi ; Ge, Xin‐Yang ; Sun, Bao‐Fa ; Song, Ge‐Ge ; Wang, Xing ; Wang, Xiu‐Zhi ; Zhang, Rui ; Wang, Hai‐Lin ; Jing, Qing ; Koziol, Magdalena J. ; Zhao, Yong‐Liang ; Zeng, An ; Zhang, Wei‐Qi ; Han, Da‐Li ; Yang, Yun‐Gui ; Yang, Ying</creator><creatorcontrib>Cui, Guanshen ; Zhou, Jia‐Yi ; Ge, Xin‐Yang ; Sun, Bao‐Fa ; Song, Ge‐Ge ; Wang, Xing ; Wang, Xiu‐Zhi ; Zhang, Rui ; Wang, Hai‐Lin ; Jing, Qing ; Koziol, Magdalena J. ; Zhao, Yong‐Liang ; Zeng, An ; Zhang, Wei‐Qi ; Han, Da‐Li ; Yang, Yun‐Gui ; Yang, Ying</creatorcontrib><description>Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole‐body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6‐methyladenosine (m6A) modification participates in many biological processes, including stem cell self‐renewal and differentiation, in particular the regeneration of haematopoietic stem cells and axons. However, how m6A controls regeneration at the whole‐organism level remains largely unknown. Here, we demonstrate that the depletion of m6A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell–cell communication and cell cycle. Single‐cell RNA‐seq (scRNA‐seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor‐like cells (NP‐like cells), characterized by specific expression of the cell–cell communication ligand grn. Intriguingly, the depletion of m6A‐modified transcripts grn, cdk9 or cdk7 partially rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6A modification in regulating whole‐organism regeneration.
As depicted in our model, during planarian homeostasis, the expression level of grn is held at a moderate level to inhibit overgrowth, as equivalent to grn expression level before amputation at 0 hpa. Upon injury, m6A modification selectively targets several important gene transcripts, including grn for degradation, manifested as its reduced expression level after 6 hpa, as well as transcripts of cell cycle‐related genes including ccnt1, cdk7 and cdk9. m6A‐mediated downregulation of these genes, especially the grn, may halt the initial proliferation of the stem cell pool at the first stage of regeneration, which in turn promotes their differentiation process, including the differentiation of neoblasts to the progenitor cells and eventually to different tissue types. After wtap knockdown, grn transcript accumulates to form a unique cell cluster resulting in increased GRN secretion, which may lead to cell cycle dysregulation and the loss of neoblast differentiation and the failure of planarian regeneration.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.13481</identifier><identifier>PMID: 37084418</identifier><language>eng</language><publisher>Chichester: John Wiley & Sons, Inc</publisher><subject>Amputation ; Axons ; Biological activity ; Biology ; Cell cycle ; Cell differentiation ; Cell interactions ; Cell self-renewal ; Communication ; Cyclin-dependent kinases ; Depletion ; Gene expression ; Hematopoietic stem cells ; Kinases ; Methyltransferase ; N6-methyladenosine ; Nervous system ; Ontology ; Organisms ; Original ; Regeneration ; Regrowth ; Ribonucleic acid ; RNA ; RNA modification ; Roles ; Stem cells ; Transcription factors</subject><ispartof>Cell proliferation, 2023-05, Vol.56 (5), p.n/a</ispartof><rights>2023 The Authors. published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1352-7664 ; 0000-0003-0121-1312 ; 0000-0002-3274-1802 ; 0000-0002-8104-5985 ; 0000-0002-8885-5104 ; 0000-0002-2821-8541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212710/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212710/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids></links><search><creatorcontrib>Cui, Guanshen</creatorcontrib><creatorcontrib>Zhou, Jia‐Yi</creatorcontrib><creatorcontrib>Ge, Xin‐Yang</creatorcontrib><creatorcontrib>Sun, Bao‐Fa</creatorcontrib><creatorcontrib>Song, Ge‐Ge</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Wang, Xiu‐Zhi</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Wang, Hai‐Lin</creatorcontrib><creatorcontrib>Jing, Qing</creatorcontrib><creatorcontrib>Koziol, Magdalena J.</creatorcontrib><creatorcontrib>Zhao, Yong‐Liang</creatorcontrib><creatorcontrib>Zeng, An</creatorcontrib><creatorcontrib>Zhang, Wei‐Qi</creatorcontrib><creatorcontrib>Han, Da‐Li</creatorcontrib><creatorcontrib>Yang, Yun‐Gui</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><title>m6A promotes planarian regeneration</title><title>Cell proliferation</title><description>Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole‐body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6‐methyladenosine (m6A) modification participates in many biological processes, including stem cell self‐renewal and differentiation, in particular the regeneration of haematopoietic stem cells and axons. However, how m6A controls regeneration at the whole‐organism level remains largely unknown. Here, we demonstrate that the depletion of m6A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell–cell communication and cell cycle. Single‐cell RNA‐seq (scRNA‐seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor‐like cells (NP‐like cells), characterized by specific expression of the cell–cell communication ligand grn. Intriguingly, the depletion of m6A‐modified transcripts grn, cdk9 or cdk7 partially rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6A modification in regulating whole‐organism regeneration.
As depicted in our model, during planarian homeostasis, the expression level of grn is held at a moderate level to inhibit overgrowth, as equivalent to grn expression level before amputation at 0 hpa. Upon injury, m6A modification selectively targets several important gene transcripts, including grn for degradation, manifested as its reduced expression level after 6 hpa, as well as transcripts of cell cycle‐related genes including ccnt1, cdk7 and cdk9. m6A‐mediated downregulation of these genes, especially the grn, may halt the initial proliferation of the stem cell pool at the first stage of regeneration, which in turn promotes their differentiation process, including the differentiation of neoblasts to the progenitor cells and eventually to different tissue types. After wtap knockdown, grn transcript accumulates to form a unique cell cluster resulting in increased GRN secretion, which may lead to cell cycle dysregulation and the loss of neoblast differentiation and the failure of planarian regeneration.</description><subject>Amputation</subject><subject>Axons</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell interactions</subject><subject>Cell self-renewal</subject><subject>Communication</subject><subject>Cyclin-dependent kinases</subject><subject>Depletion</subject><subject>Gene expression</subject><subject>Hematopoietic stem cells</subject><subject>Kinases</subject><subject>Methyltransferase</subject><subject>N6-methyladenosine</subject><subject>Nervous system</subject><subject>Ontology</subject><subject>Organisms</subject><subject>Original</subject><subject>Regeneration</subject><subject>Regrowth</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA modification</subject><subject>Roles</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkF1LwzAUhoMobk4v_AeDXXfLSdJ8XMkYToWBIrsPaZrOjjapaavs31u3IXhuzoH35eHwIHQPeA7DLGwT50CZhAs0BsrThIBkl2iMFceJEISM0E3b7jEGCoJfoxEVWDIGcoxmNV9Omxjq0Ll22lTGm1gaP41u57yLpiuDv0VXhalad3feE7RdP25Xz8nm9elltdwkDRlgCbUKOJeioLnlkJNCMZWJ3EKWKeWEoQxS61KAwmEmZcosz5kiObUpT11GJ-jhhG36rHa5db6LptJNLGsTDzqYUv9PfPmhd-FLAyZABOCBMDsTYvjsXdvpfeijH37WRIICzODYWpxa32XlDn98wPpXph5k6qNMvXp7Px70B92yZss</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Cui, Guanshen</creator><creator>Zhou, Jia‐Yi</creator><creator>Ge, Xin‐Yang</creator><creator>Sun, Bao‐Fa</creator><creator>Song, Ge‐Ge</creator><creator>Wang, Xing</creator><creator>Wang, Xiu‐Zhi</creator><creator>Zhang, Rui</creator><creator>Wang, Hai‐Lin</creator><creator>Jing, Qing</creator><creator>Koziol, Magdalena J.</creator><creator>Zhao, Yong‐Liang</creator><creator>Zeng, An</creator><creator>Zhang, Wei‐Qi</creator><creator>Han, Da‐Li</creator><creator>Yang, Yun‐Gui</creator><creator>Yang, Ying</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1352-7664</orcidid><orcidid>https://orcid.org/0000-0003-0121-1312</orcidid><orcidid>https://orcid.org/0000-0002-3274-1802</orcidid><orcidid>https://orcid.org/0000-0002-8104-5985</orcidid><orcidid>https://orcid.org/0000-0002-8885-5104</orcidid><orcidid>https://orcid.org/0000-0002-2821-8541</orcidid></search><sort><creationdate>202305</creationdate><title>m6A promotes planarian regeneration</title><author>Cui, Guanshen ; Zhou, Jia‐Yi ; Ge, Xin‐Yang ; Sun, Bao‐Fa ; Song, Ge‐Ge ; Wang, Xing ; Wang, Xiu‐Zhi ; Zhang, Rui ; Wang, Hai‐Lin ; Jing, Qing ; Koziol, Magdalena J. ; Zhao, Yong‐Liang ; Zeng, An ; Zhang, Wei‐Qi ; Han, Da‐Li ; Yang, Yun‐Gui ; Yang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2441-3c916687f3dc61d2f949b7dc1bb99e7a3415ce511fe048854c6d492d3c565eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amputation</topic><topic>Axons</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell interactions</topic><topic>Cell self-renewal</topic><topic>Communication</topic><topic>Cyclin-dependent kinases</topic><topic>Depletion</topic><topic>Gene expression</topic><topic>Hematopoietic stem cells</topic><topic>Kinases</topic><topic>Methyltransferase</topic><topic>N6-methyladenosine</topic><topic>Nervous system</topic><topic>Ontology</topic><topic>Organisms</topic><topic>Original</topic><topic>Regeneration</topic><topic>Regrowth</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA modification</topic><topic>Roles</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Guanshen</creatorcontrib><creatorcontrib>Zhou, Jia‐Yi</creatorcontrib><creatorcontrib>Ge, Xin‐Yang</creatorcontrib><creatorcontrib>Sun, Bao‐Fa</creatorcontrib><creatorcontrib>Song, Ge‐Ge</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Wang, Xiu‐Zhi</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Wang, Hai‐Lin</creatorcontrib><creatorcontrib>Jing, Qing</creatorcontrib><creatorcontrib>Koziol, Magdalena J.</creatorcontrib><creatorcontrib>Zhao, Yong‐Liang</creatorcontrib><creatorcontrib>Zeng, An</creatorcontrib><creatorcontrib>Zhang, Wei‐Qi</creatorcontrib><creatorcontrib>Han, Da‐Li</creatorcontrib><creatorcontrib>Yang, Yun‐Gui</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Guanshen</au><au>Zhou, Jia‐Yi</au><au>Ge, Xin‐Yang</au><au>Sun, Bao‐Fa</au><au>Song, Ge‐Ge</au><au>Wang, Xing</au><au>Wang, Xiu‐Zhi</au><au>Zhang, Rui</au><au>Wang, Hai‐Lin</au><au>Jing, Qing</au><au>Koziol, Magdalena J.</au><au>Zhao, Yong‐Liang</au><au>Zeng, An</au><au>Zhang, Wei‐Qi</au><au>Han, Da‐Li</au><au>Yang, Yun‐Gui</au><au>Yang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>m6A promotes planarian regeneration</atitle><jtitle>Cell proliferation</jtitle><date>2023-05</date><risdate>2023</risdate><volume>56</volume><issue>5</issue><epage>n/a</epage><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole‐body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6‐methyladenosine (m6A) modification participates in many biological processes, including stem cell self‐renewal and differentiation, in particular the regeneration of haematopoietic stem cells and axons. However, how m6A controls regeneration at the whole‐organism level remains largely unknown. Here, we demonstrate that the depletion of m6A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell–cell communication and cell cycle. Single‐cell RNA‐seq (scRNA‐seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor‐like cells (NP‐like cells), characterized by specific expression of the cell–cell communication ligand grn. Intriguingly, the depletion of m6A‐modified transcripts grn, cdk9 or cdk7 partially rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6A modification in regulating whole‐organism regeneration.
As depicted in our model, during planarian homeostasis, the expression level of grn is held at a moderate level to inhibit overgrowth, as equivalent to grn expression level before amputation at 0 hpa. Upon injury, m6A modification selectively targets several important gene transcripts, including grn for degradation, manifested as its reduced expression level after 6 hpa, as well as transcripts of cell cycle‐related genes including ccnt1, cdk7 and cdk9. m6A‐mediated downregulation of these genes, especially the grn, may halt the initial proliferation of the stem cell pool at the first stage of regeneration, which in turn promotes their differentiation process, including the differentiation of neoblasts to the progenitor cells and eventually to different tissue types. After wtap knockdown, grn transcript accumulates to form a unique cell cluster resulting in increased GRN secretion, which may lead to cell cycle dysregulation and the loss of neoblast differentiation and the failure of planarian regeneration.</abstract><cop>Chichester</cop><pub>John Wiley & Sons, Inc</pub><pmid>37084418</pmid><doi>10.1111/cpr.13481</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1352-7664</orcidid><orcidid>https://orcid.org/0000-0003-0121-1312</orcidid><orcidid>https://orcid.org/0000-0002-3274-1802</orcidid><orcidid>https://orcid.org/0000-0002-8104-5985</orcidid><orcidid>https://orcid.org/0000-0002-8885-5104</orcidid><orcidid>https://orcid.org/0000-0002-2821-8541</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7722 |
ispartof | Cell proliferation, 2023-05, Vol.56 (5), p.n/a |
issn | 0960-7722 1365-2184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212710 |
source | Wiley Journals; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; PubMed Central |
subjects | Amputation Axons Biological activity Biology Cell cycle Cell differentiation Cell interactions Cell self-renewal Communication Cyclin-dependent kinases Depletion Gene expression Hematopoietic stem cells Kinases Methyltransferase N6-methyladenosine Nervous system Ontology Organisms Original Regeneration Regrowth Ribonucleic acid RNA RNA modification Roles Stem cells Transcription factors |
title | m6A promotes planarian regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=m6A%20promotes%20planarian%20regeneration&rft.jtitle=Cell%20proliferation&rft.au=Cui,%20Guanshen&rft.date=2023-05&rft.volume=56&rft.issue=5&rft.epage=n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.13481&rft_dat=%3Cproquest_pubme%3E2819104110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819104110&rft_id=info:pmid/37084418&rfr_iscdi=true |