Adult progenitor rejuvenation with embryonic factors

During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell proliferation 2023-05, Vol.56 (5), p.e13459-n/a
Hauptverfasser: Wang, Peng, Liu, Xupeng, Chen, Yu, Jun‐Hao, Elwin Tan, Yao, Ziyue, Min‐Wen, Jason Chua, Yan‐Jiang, Benjamin Chua, Ma, Shilin, Ma, Wenwu, Luo, Lanfang, Guo, Luyao, Song, Dan, Shyh‐Chang, Ng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e13459
container_title Cell proliferation
container_volume 56
creator Wang, Peng
Liu, Xupeng
Chen, Yu
Jun‐Hao, Elwin Tan
Yao, Ziyue
Min‐Wen, Jason Chua
Yan‐Jiang, Benjamin Chua
Ma, Shilin
Ma, Wenwu
Luo, Lanfang
Guo, Luyao
Song, Dan
Shyh‐Chang, Ng
description During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage‐specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh‐p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self‐renewal and rescued the pro‐senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let‐7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self‐renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A‐driven hypoxic response in Hypoxia Inducible Factor‐1α (HIF1α) and glycolysis, and thus LTS progenitor self‐renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing‐related muscle degeneration. Model of how LIN28A, mitochondrial reactive oxygen species, and the HIF1α‐associated
doi_str_mv 10.1111/cpr.13459
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813556839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-81690549ab9f3a15e559695a49a67710c454e7dba535c35ee745f077d3c644273</originalsourceid><addsrcrecordid>eNp10ctKAzEUBuAgitbLwheQATe6GM2Z3CYrKcUbCIroOqRppk2ZTmoy09K3N7UqKphNIPn4OcmP0DHgC0jr0szDBRDK5BbqAeEsL6Ck26iHJce5EEWxh_ZjnGIMBATfRXtEgBAllT1E-6OubrN58GPbuNaHLNhpt7CNbp1vsqVrJ5mdDcPKN85klTaJxEO0U-k62qPP_QC93ly_DO7yh8fb-0H_ITeUUpmXwCVmVOqhrIgGZhmTXDKdTrgQgA1l1IrRUDPCDGHWCsoqLMSIGE5pIcgButrkzrvhzI6MbdqgazUPbqbDSnnt1O-bxk3U2C8U4AIKLtcJZ58Jwb91NrZq5qKxda0b67uoihIIY7wkMtHTP3Tqu9Ck962VBEwBl0mdb5QJPsZgq-9pAKt1GSqVoT7KSPbk5_jf8uv3E7jcgKWr7er_JDV4et5EvgNjs5Kl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819104108</pqid></control><display><type>article</type><title>Adult progenitor rejuvenation with embryonic factors</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Wang, Peng ; Liu, Xupeng ; Chen, Yu ; Jun‐Hao, Elwin Tan ; Yao, Ziyue ; Min‐Wen, Jason Chua ; Yan‐Jiang, Benjamin Chua ; Ma, Shilin ; Ma, Wenwu ; Luo, Lanfang ; Guo, Luyao ; Song, Dan ; Shyh‐Chang, Ng</creator><creatorcontrib>Wang, Peng ; Liu, Xupeng ; Chen, Yu ; Jun‐Hao, Elwin Tan ; Yao, Ziyue ; Min‐Wen, Jason Chua ; Yan‐Jiang, Benjamin Chua ; Ma, Shilin ; Ma, Wenwu ; Luo, Lanfang ; Guo, Luyao ; Song, Dan ; Shyh‐Chang, Ng</creatorcontrib><description>During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage‐specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh‐p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self‐renewal and rescued the pro‐senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let‐7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self‐renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A‐driven hypoxic response in Hypoxia Inducible Factor‐1α (HIF1α) and glycolysis, and thus LTS progenitor self‐renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing‐related muscle degeneration. Model of how LIN28A, mitochondrial reactive oxygen species, and the HIF1α‐associated metabolic stress response network promotes stem cell self‐renewal.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.13459</identifier><identifier>PMID: 37177849</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adult Stem Cells - metabolism ; Aging ; Cachexia ; Cell cycle ; Cell Differentiation ; Cell self-renewal ; Damage ; Degeneration ; Differentiation ; DNA damage ; Embryogenesis ; Embryonic growth stage ; Glycolysis ; Hypoxia ; Karyotypes ; MicroRNAs ; miRNA ; Mitochondria ; Mitosis ; Muscles ; Musculoskeletal system ; Myogenesis ; Original ; Oxidative phosphorylation ; p53 Protein ; Perturbation ; Phenotypes ; Phosphorylation ; Protein folding ; Proteins ; Reactive oxygen species ; Rejuvenation ; Ribonucleic acid ; RNA ; Sarcopenia ; Senescence ; Skeletal muscle ; Stem cells ; Transplantation ; Tumor Suppressor Protein p53 - metabolism ; Tumorigenesis ; Young adults</subject><ispartof>Cell proliferation, 2023-05, Vol.56 (5), p.e13459-n/a</ispartof><rights>2023 The Authors. published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4449-81690549ab9f3a15e559695a49a67710c454e7dba535c35ee745f077d3c644273</citedby><cites>FETCH-LOGICAL-c4449-81690549ab9f3a15e559695a49a67710c454e7dba535c35ee745f077d3c644273</cites><orcidid>0000-0003-3138-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212697/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212697/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37177849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liu, Xupeng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Jun‐Hao, Elwin Tan</creatorcontrib><creatorcontrib>Yao, Ziyue</creatorcontrib><creatorcontrib>Min‐Wen, Jason Chua</creatorcontrib><creatorcontrib>Yan‐Jiang, Benjamin Chua</creatorcontrib><creatorcontrib>Ma, Shilin</creatorcontrib><creatorcontrib>Ma, Wenwu</creatorcontrib><creatorcontrib>Luo, Lanfang</creatorcontrib><creatorcontrib>Guo, Luyao</creatorcontrib><creatorcontrib>Song, Dan</creatorcontrib><creatorcontrib>Shyh‐Chang, Ng</creatorcontrib><title>Adult progenitor rejuvenation with embryonic factors</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage‐specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh‐p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self‐renewal and rescued the pro‐senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let‐7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self‐renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A‐driven hypoxic response in Hypoxia Inducible Factor‐1α (HIF1α) and glycolysis, and thus LTS progenitor self‐renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing‐related muscle degeneration. Model of how LIN28A, mitochondrial reactive oxygen species, and the HIF1α‐associated metabolic stress response network promotes stem cell self‐renewal.</description><subject>Adult Stem Cells - metabolism</subject><subject>Aging</subject><subject>Cachexia</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell self-renewal</subject><subject>Damage</subject><subject>Degeneration</subject><subject>Differentiation</subject><subject>DNA damage</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Glycolysis</subject><subject>Hypoxia</subject><subject>Karyotypes</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Mitosis</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>Original</subject><subject>Oxidative phosphorylation</subject><subject>p53 Protein</subject><subject>Perturbation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Rejuvenation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sarcopenia</subject><subject>Senescence</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumorigenesis</subject><subject>Young adults</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp10ctKAzEUBuAgitbLwheQATe6GM2Z3CYrKcUbCIroOqRppk2ZTmoy09K3N7UqKphNIPn4OcmP0DHgC0jr0szDBRDK5BbqAeEsL6Ck26iHJce5EEWxh_ZjnGIMBATfRXtEgBAllT1E-6OubrN58GPbuNaHLNhpt7CNbp1vsqVrJ5mdDcPKN85klTaJxEO0U-k62qPP_QC93ly_DO7yh8fb-0H_ITeUUpmXwCVmVOqhrIgGZhmTXDKdTrgQgA1l1IrRUDPCDGHWCsoqLMSIGE5pIcgButrkzrvhzI6MbdqgazUPbqbDSnnt1O-bxk3U2C8U4AIKLtcJZ58Jwb91NrZq5qKxda0b67uoihIIY7wkMtHTP3Tqu9Ck962VBEwBl0mdb5QJPsZgq-9pAKt1GSqVoT7KSPbk5_jf8uv3E7jcgKWr7er_JDV4et5EvgNjs5Kl</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wang, Peng</creator><creator>Liu, Xupeng</creator><creator>Chen, Yu</creator><creator>Jun‐Hao, Elwin Tan</creator><creator>Yao, Ziyue</creator><creator>Min‐Wen, Jason Chua</creator><creator>Yan‐Jiang, Benjamin Chua</creator><creator>Ma, Shilin</creator><creator>Ma, Wenwu</creator><creator>Luo, Lanfang</creator><creator>Guo, Luyao</creator><creator>Song, Dan</creator><creator>Shyh‐Chang, Ng</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3138-9525</orcidid></search><sort><creationdate>202305</creationdate><title>Adult progenitor rejuvenation with embryonic factors</title><author>Wang, Peng ; Liu, Xupeng ; Chen, Yu ; Jun‐Hao, Elwin Tan ; Yao, Ziyue ; Min‐Wen, Jason Chua ; Yan‐Jiang, Benjamin Chua ; Ma, Shilin ; Ma, Wenwu ; Luo, Lanfang ; Guo, Luyao ; Song, Dan ; Shyh‐Chang, Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-81690549ab9f3a15e559695a49a67710c454e7dba535c35ee745f077d3c644273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult Stem Cells - metabolism</topic><topic>Aging</topic><topic>Cachexia</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell self-renewal</topic><topic>Damage</topic><topic>Degeneration</topic><topic>Differentiation</topic><topic>DNA damage</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Glycolysis</topic><topic>Hypoxia</topic><topic>Karyotypes</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Mitosis</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>Original</topic><topic>Oxidative phosphorylation</topic><topic>p53 Protein</topic><topic>Perturbation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Rejuvenation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sarcopenia</topic><topic>Senescence</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumorigenesis</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Liu, Xupeng</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Jun‐Hao, Elwin Tan</creatorcontrib><creatorcontrib>Yao, Ziyue</creatorcontrib><creatorcontrib>Min‐Wen, Jason Chua</creatorcontrib><creatorcontrib>Yan‐Jiang, Benjamin Chua</creatorcontrib><creatorcontrib>Ma, Shilin</creatorcontrib><creatorcontrib>Ma, Wenwu</creatorcontrib><creatorcontrib>Luo, Lanfang</creatorcontrib><creatorcontrib>Guo, Luyao</creatorcontrib><creatorcontrib>Song, Dan</creatorcontrib><creatorcontrib>Shyh‐Chang, Ng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Liu, Xupeng</au><au>Chen, Yu</au><au>Jun‐Hao, Elwin Tan</au><au>Yao, Ziyue</au><au>Min‐Wen, Jason Chua</au><au>Yan‐Jiang, Benjamin Chua</au><au>Ma, Shilin</au><au>Ma, Wenwu</au><au>Luo, Lanfang</au><au>Guo, Luyao</au><au>Song, Dan</au><au>Shyh‐Chang, Ng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adult progenitor rejuvenation with embryonic factors</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2023-05</date><risdate>2023</risdate><volume>56</volume><issue>5</issue><spage>e13459</spage><epage>n/a</epage><pages>e13459-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage‐specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh‐p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self‐renewal and rescued the pro‐senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let‐7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self‐renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A‐driven hypoxic response in Hypoxia Inducible Factor‐1α (HIF1α) and glycolysis, and thus LTS progenitor self‐renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing‐related muscle degeneration. Model of how LIN28A, mitochondrial reactive oxygen species, and the HIF1α‐associated metabolic stress response network promotes stem cell self‐renewal.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37177849</pmid><doi>10.1111/cpr.13459</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3138-9525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7722
ispartof Cell proliferation, 2023-05, Vol.56 (5), p.e13459-n/a
issn 0960-7722
1365-2184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10212697
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Adult Stem Cells - metabolism
Aging
Cachexia
Cell cycle
Cell Differentiation
Cell self-renewal
Damage
Degeneration
Differentiation
DNA damage
Embryogenesis
Embryonic growth stage
Glycolysis
Hypoxia
Karyotypes
MicroRNAs
miRNA
Mitochondria
Mitosis
Muscles
Musculoskeletal system
Myogenesis
Original
Oxidative phosphorylation
p53 Protein
Perturbation
Phenotypes
Phosphorylation
Protein folding
Proteins
Reactive oxygen species
Rejuvenation
Ribonucleic acid
RNA
Sarcopenia
Senescence
Skeletal muscle
Stem cells
Transplantation
Tumor Suppressor Protein p53 - metabolism
Tumorigenesis
Young adults
title Adult progenitor rejuvenation with embryonic factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adult%20progenitor%20rejuvenation%20with%20embryonic%20factors&rft.jtitle=Cell%20proliferation&rft.au=Wang,%20Peng&rft.date=2023-05&rft.volume=56&rft.issue=5&rft.spage=e13459&rft.epage=n/a&rft.pages=e13459-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.13459&rft_dat=%3Cproquest_pubme%3E2813556839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819104108&rft_id=info:pmid/37177849&rfr_iscdi=true