Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds

Background Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2023-06, Vol.50 (6), p.5125-5135
Hauptverfasser: Piperigkou, Zoi, Bainantzou, Dimitra, Makri, Nadia, Papachristou, Eleni, Mantsou, Aglaia, Choli-Papadopoulou, Theodora, Theocharis, Achilleas D., Karamanos, Nikos K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5135
container_issue 6
container_start_page 5125
container_title Molecular biology reports
container_volume 50
creator Piperigkou, Zoi
Bainantzou, Dimitra
Makri, Nadia
Papachristou, Eleni
Mantsou, Aglaia
Choli-Papadopoulou, Theodora
Theocharis, Achilleas D.
Karamanos, Nikos K.
description Background Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. Methods and results In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton’s jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. Conclusions Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.
doi_str_mv 10.1007/s11033-023-08461-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10209287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807915490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-454c64cb26b91c3f9332d49a6b95aeada73468e645ca29dd24a3242d3f2b7b533</originalsourceid><addsrcrecordid>eNp9kU1OHDEQha0oURggF8gCWWLDpoN_2-5VFCEgIyGxCWvLbVfPNOq2B7snYnZcg-txEgxDSGCRhWVZ76tXVX4IfaXkGyVEHWdKCecVYeVoUdPq9gOaUal4JRqlP6IZ4YRWQku6g3ZzviaECKrkZ7TDFaWaazZD3WlY2uBghDDh2OERMgS33Ix2wHmCETsYhvxwd4_dMgaf4gJC7_AqTqWgL1C7wdNmBXg-xy4Ogy161doMHrd9zM52XRx83kefOjtk-PJy76Grs9NfJz-ri8vz-cmPi8oJVk-VkMLVwrWsbhvqeNdwzrxobHlKC9ZbxUWtoRbSWdZ4z4TlTDDPO9aqVnK-h75vfVfrdgTvypDJDmaV-tGmjYm2N2-V0C_NIv42lDDSMK2Kw9GLQ4o3a8iTGfv89Ak2QFxnwzRRDZWiIQU9fIdex3UKZb9CUS1lLTUrFNtSLsWcE3Sv01BinnI02xxNydE852huS9HBv3u8lvwJrgB8C-QihQWkv73_Y_sIMyGrww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818556582</pqid></control><display><type>article</type><title>Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Piperigkou, Zoi ; Bainantzou, Dimitra ; Makri, Nadia ; Papachristou, Eleni ; Mantsou, Aglaia ; Choli-Papadopoulou, Theodora ; Theocharis, Achilleas D. ; Karamanos, Nikos K.</creator><creatorcontrib>Piperigkou, Zoi ; Bainantzou, Dimitra ; Makri, Nadia ; Papachristou, Eleni ; Mantsou, Aglaia ; Choli-Papadopoulou, Theodora ; Theocharis, Achilleas D. ; Karamanos, Nikos K.</creatorcontrib><description>Background Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. Methods and results In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton’s jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. Conclusions Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-023-08461-x</identifier><identifier>PMID: 37118382</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Biomedical and Life Sciences ; Cartilage ; Cartilage diseases ; Cell culture ; Cell Culture Techniques ; Cell- and Tissue-Based Therapy ; Chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Collagen ; Collagen Type II ; Dental pulp ; Dental Pulp - cytology ; Extracellular matrix ; Histology ; Humans ; Life Sciences ; Matrix Metalloproteinases - metabolism ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Morphology ; Original ; Original Article ; Osteoarthritis ; Osteoarthritis - therapy ; Primary Cell Culture - methods ; Regenerative medicine ; Stem cells ; Tissue engineering ; Tissue Inhibitor of Metalloproteinases - metabolism ; Umbilical Cord - cytology</subject><ispartof>Molecular biology reports, 2023-06, Vol.50 (6), p.5125-5135</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-454c64cb26b91c3f9332d49a6b95aeada73468e645ca29dd24a3242d3f2b7b533</cites><orcidid>0000-0002-7459-5807 ; 0000-0003-3618-0288 ; 0000-0002-0472-5389 ; 0000-0001-8611-2297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-023-08461-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-023-08461-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37118382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piperigkou, Zoi</creatorcontrib><creatorcontrib>Bainantzou, Dimitra</creatorcontrib><creatorcontrib>Makri, Nadia</creatorcontrib><creatorcontrib>Papachristou, Eleni</creatorcontrib><creatorcontrib>Mantsou, Aglaia</creatorcontrib><creatorcontrib>Choli-Papadopoulou, Theodora</creatorcontrib><creatorcontrib>Theocharis, Achilleas D.</creatorcontrib><creatorcontrib>Karamanos, Nikos K.</creatorcontrib><title>Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Background Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. Methods and results In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton’s jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. Conclusions Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cartilage</subject><subject>Cartilage diseases</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell- and Tissue-Based Therapy</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Collagen</subject><subject>Collagen Type II</subject><subject>Dental pulp</subject><subject>Dental Pulp - cytology</subject><subject>Extracellular matrix</subject><subject>Histology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Osteoarthritis</subject><subject>Osteoarthritis - therapy</subject><subject>Primary Cell Culture - methods</subject><subject>Regenerative medicine</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Inhibitor of Metalloproteinases - metabolism</subject><subject>Umbilical Cord - cytology</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1OHDEQha0oURggF8gCWWLDpoN_2-5VFCEgIyGxCWvLbVfPNOq2B7snYnZcg-txEgxDSGCRhWVZ76tXVX4IfaXkGyVEHWdKCecVYeVoUdPq9gOaUal4JRqlP6IZ4YRWQku6g3ZzviaECKrkZ7TDFaWaazZD3WlY2uBghDDh2OERMgS33Ix2wHmCETsYhvxwd4_dMgaf4gJC7_AqTqWgL1C7wdNmBXg-xy4Ogy161doMHrd9zM52XRx83kefOjtk-PJy76Grs9NfJz-ri8vz-cmPi8oJVk-VkMLVwrWsbhvqeNdwzrxobHlKC9ZbxUWtoRbSWdZ4z4TlTDDPO9aqVnK-h75vfVfrdgTvypDJDmaV-tGmjYm2N2-V0C_NIv42lDDSMK2Kw9GLQ4o3a8iTGfv89Ak2QFxnwzRRDZWiIQU9fIdex3UKZb9CUS1lLTUrFNtSLsWcE3Sv01BinnI02xxNydE852huS9HBv3u8lvwJrgB8C-QihQWkv73_Y_sIMyGrww</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Piperigkou, Zoi</creator><creator>Bainantzou, Dimitra</creator><creator>Makri, Nadia</creator><creator>Papachristou, Eleni</creator><creator>Mantsou, Aglaia</creator><creator>Choli-Papadopoulou, Theodora</creator><creator>Theocharis, Achilleas D.</creator><creator>Karamanos, Nikos K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7459-5807</orcidid><orcidid>https://orcid.org/0000-0003-3618-0288</orcidid><orcidid>https://orcid.org/0000-0002-0472-5389</orcidid><orcidid>https://orcid.org/0000-0001-8611-2297</orcidid></search><sort><creationdate>20230601</creationdate><title>Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds</title><author>Piperigkou, Zoi ; Bainantzou, Dimitra ; Makri, Nadia ; Papachristou, Eleni ; Mantsou, Aglaia ; Choli-Papadopoulou, Theodora ; Theocharis, Achilleas D. ; Karamanos, Nikos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-454c64cb26b91c3f9332d49a6b95aeada73468e645ca29dd24a3242d3f2b7b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cartilage</topic><topic>Cartilage diseases</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell- and Tissue-Based Therapy</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Collagen</topic><topic>Collagen Type II</topic><topic>Dental pulp</topic><topic>Dental Pulp - cytology</topic><topic>Extracellular matrix</topic><topic>Histology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Osteoarthritis</topic><topic>Osteoarthritis - therapy</topic><topic>Primary Cell Culture - methods</topic><topic>Regenerative medicine</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Inhibitor of Metalloproteinases - metabolism</topic><topic>Umbilical Cord - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piperigkou, Zoi</creatorcontrib><creatorcontrib>Bainantzou, Dimitra</creatorcontrib><creatorcontrib>Makri, Nadia</creatorcontrib><creatorcontrib>Papachristou, Eleni</creatorcontrib><creatorcontrib>Mantsou, Aglaia</creatorcontrib><creatorcontrib>Choli-Papadopoulou, Theodora</creatorcontrib><creatorcontrib>Theocharis, Achilleas D.</creatorcontrib><creatorcontrib>Karamanos, Nikos K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piperigkou, Zoi</au><au>Bainantzou, Dimitra</au><au>Makri, Nadia</au><au>Papachristou, Eleni</au><au>Mantsou, Aglaia</au><au>Choli-Papadopoulou, Theodora</au><au>Theocharis, Achilleas D.</au><au>Karamanos, Nikos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>50</volume><issue>6</issue><spage>5125</spage><epage>5135</epage><pages>5125-5135</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Background Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. Methods and results In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton’s jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. Conclusions Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37118382</pmid><doi>10.1007/s11033-023-08461-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7459-5807</orcidid><orcidid>https://orcid.org/0000-0003-3618-0288</orcidid><orcidid>https://orcid.org/0000-0002-0472-5389</orcidid><orcidid>https://orcid.org/0000-0001-8611-2297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2023-06, Vol.50 (6), p.5125-5135
issn 0301-4851
1573-4978
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10209287
source MEDLINE; SpringerNature Journals
subjects Animal Anatomy
Animal Biochemistry
Biomedical and Life Sciences
Cartilage
Cartilage diseases
Cell culture
Cell Culture Techniques
Cell- and Tissue-Based Therapy
Chondrocytes
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrogenesis
Collagen
Collagen Type II
Dental pulp
Dental Pulp - cytology
Extracellular matrix
Histology
Humans
Life Sciences
Matrix Metalloproteinases - metabolism
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Morphology
Original
Original Article
Osteoarthritis
Osteoarthritis - therapy
Primary Cell Culture - methods
Regenerative medicine
Stem cells
Tissue engineering
Tissue Inhibitor of Metalloproteinases - metabolism
Umbilical Cord - cytology
title Enhancement of mesenchymal stem cells’ chondrogenic potential by type II collagen-based bioscaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20mesenchymal%20stem%20cells%E2%80%99%20chondrogenic%20potential%20by%20type%20II%20collagen-based%20bioscaffolds&rft.jtitle=Molecular%20biology%20reports&rft.au=Piperigkou,%20Zoi&rft.date=2023-06-01&rft.volume=50&rft.issue=6&rft.spage=5125&rft.epage=5135&rft.pages=5125-5135&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-023-08461-x&rft_dat=%3Cproquest_pubme%3E2807915490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818556582&rft_id=info:pmid/37118382&rfr_iscdi=true