Development and validation of models for detection of postoperative infections using structured electronic health records data and machine learning

Postoperative infections constitute more than half of all postoperative complications. Surveillance of these complications is primarily done through manual chart review, which is time consuming, expensive, and typically only covers 10% to 15% of all operations. Automated surveillance would permit th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgery 2023-02, Vol.173 (2), p.464-471
Hauptverfasser: Colborn, Kathryn L., Zhuang, Yaxu, Dyas, Adam R., Henderson, William G., Madsen, Helen J., Bronsert, Michael R., Matheny, Michael E., Lambert-Kerzner, Anne, Myers, Quintin W.O., Meguid, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!