Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging

Acute exercise suppresses appetite and alters food‐cue reactivity, but the extent exercise‐induced changes in cerebral blood flow (CBF) influences the blood‐oxygen‐level‐dependent (BOLD) signal during appetite‐related paradigms is not known. This study examined the impact of acute running on visual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2023-06, Vol.44 (9), p.3815-3832
Hauptverfasser: Thackray, Alice E., Hinton, Elanor C., Alanazi, Turki M., Dera, Abdulrahman M., Fujihara, Kyoko, Hamilton‐Shield, Julian P., King, James A., Lithander, Fiona E., Miyashita, Masashi, Thompson, Julie, Morgan, Paul S., Davies, Melanie J., Stensel, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3832
container_issue 9
container_start_page 3815
container_title Human brain mapping
container_volume 44
creator Thackray, Alice E.
Hinton, Elanor C.
Alanazi, Turki M.
Dera, Abdulrahman M.
Fujihara, Kyoko
Hamilton‐Shield, Julian P.
King, James A.
Lithander, Fiona E.
Miyashita, Masashi
Thompson, Julie
Morgan, Paul S.
Davies, Melanie J.
Stensel, David J.
description Acute exercise suppresses appetite and alters food‐cue reactivity, but the extent exercise‐induced changes in cerebral blood flow (CBF) influences the blood‐oxygen‐level‐dependent (BOLD) signal during appetite‐related paradigms is not known. This study examined the impact of acute running on visual food‐cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five‐minute pseudo‐continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD‐fMRI was acquired during a food‐cue reactivity task before and 28 min after exercise/rest. Food‐cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time‐by‐trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate‐to‐large reductions in subjective appetite ratings (Cohen's d = 0.53–0.84; p ≤ .024) and increased food‐cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise‐induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food‐cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF. We investigated the impact of a single running bout on cerebral blood flow (CBF) and food cue reactivity using functional magnetic resonance imaging (fMRI) in healthy men. Running did not alter the time‐course of grey matter or regional CBF up to 30 min after exercise cessation but increased food cue reactivity in brain regions implicated in attention, reward and episodic memory retrieval. Exercise‐related BOLD signal changes were detected in the presence of underlying CBF.
doi_str_mv 10.1002/hbm.26314
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817261724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4444-5498c70605c3248c73e9e03a980fcc057faef1e87225853cd3aba0536141100e3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhiMEoqWw4AWQJTawSGvHcS4rVKpCkYrYwNpyfMYnrhL74EtLXoTnZXJOqQAJS5bHnm9-jecvipeMnjJKq7NxmE-rhrP6UXHMaN-WlPX88Ro3ouzrlh0Vz2K8oZQxQdnT4oi3rBZ9I46Ln5c_dpMP1m1JGoEonRMQMAZ0isQbErJza9I7oiHAENREhsn7DTGTvyPKYbDedAYSQOlkb21aiHVkBDWlcSGLz1g_gyM5rkomO6S8Q6FZbR0kq7Ey4oPTQCy-IfW8eGLUFOHF_XlSfPtw-fXiqrz-8vHTxfl1qWtcpaj7Tre0oULzqsaQQw-Uq76jRmsqWqPAMOjaqhKd4HrD1aCo4A2rGU4O-Enx7qC7y8MMGw0u4Q_lLmAfYZFeWfl3xtlRbv2tZLSivO1bVHhzrxD89wwxydlGDdOkHPgcZdWhIxWle_T1P-iNzwEHsafaqsFdI_X2QOngYwxgHrphVK52S7Rb7u1G9tWf7T-Qv_1F4OwA3NkJlv8ryav3nw-SvwD8craO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817261724</pqid></control><display><type>article</type><title>Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Thackray, Alice E. ; Hinton, Elanor C. ; Alanazi, Turki M. ; Dera, Abdulrahman M. ; Fujihara, Kyoko ; Hamilton‐Shield, Julian P. ; King, James A. ; Lithander, Fiona E. ; Miyashita, Masashi ; Thompson, Julie ; Morgan, Paul S. ; Davies, Melanie J. ; Stensel, David J.</creator><creatorcontrib>Thackray, Alice E. ; Hinton, Elanor C. ; Alanazi, Turki M. ; Dera, Abdulrahman M. ; Fujihara, Kyoko ; Hamilton‐Shield, Julian P. ; King, James A. ; Lithander, Fiona E. ; Miyashita, Masashi ; Thompson, Julie ; Morgan, Paul S. ; Davies, Melanie J. ; Stensel, David J.</creatorcontrib><description>Acute exercise suppresses appetite and alters food‐cue reactivity, but the extent exercise‐induced changes in cerebral blood flow (CBF) influences the blood‐oxygen‐level‐dependent (BOLD) signal during appetite‐related paradigms is not known. This study examined the impact of acute running on visual food‐cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five‐minute pseudo‐continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD‐fMRI was acquired during a food‐cue reactivity task before and 28 min after exercise/rest. Food‐cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time‐by‐trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate‐to‐large reductions in subjective appetite ratings (Cohen's d = 0.53–0.84; p ≤ .024) and increased food‐cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise‐induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food‐cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF. We investigated the impact of a single running bout on cerebral blood flow (CBF) and food cue reactivity using functional magnetic resonance imaging (fMRI) in healthy men. Running did not alter the time‐course of grey matter or regional CBF up to 30 min after exercise cessation but increased food cue reactivity in brain regions implicated in attention, reward and episodic memory retrieval. Exercise‐related BOLD signal changes were detected in the presence of underlying CBF.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26314</identifier><identifier>PMID: 37145965</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acute effects ; Amygdala ; Appetite ; Blood flow ; Body fat ; Brain ; Brain - physiology ; Caudate-putamen ; Cerebral blood flow ; Cerebrovascular Circulation - physiology ; Cortex (frontal) ; Cross-Over Studies ; Cues ; Eating behavior ; Exercise ; fMRI ; Food ; food cue reactivity ; Functional magnetic resonance imaging ; Hippocampus ; Humans ; Labeling ; Laboratories ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Maximum oxygen consumption ; Metabolism ; Neostriatum ; Neuroimaging ; Oxygen ; Oxygen consumption ; Oxygen uptake ; Physical fitness ; Physical training ; Questionnaires ; Ratings ; Running ; Spin labeling ; Substantia grisea ; Time dependence ; Variability ; Visual stimuli</subject><ispartof>Human brain mapping, 2023-06, Vol.44 (9), p.3815-3832</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4444-5498c70605c3248c73e9e03a980fcc057faef1e87225853cd3aba0536141100e3</citedby><cites>FETCH-LOGICAL-c4444-5498c70605c3248c73e9e03a980fcc057faef1e87225853cd3aba0536141100e3</cites><orcidid>0000-0003-2793-8552 ; 0000-0002-7800-3207 ; 0000-0002-8174-9173 ; 0000-0002-5870-1446 ; 0000-0003-2601-7575 ; 0000-0002-7656-641X ; 0000-0001-9119-8590 ; 0000-0003-4542-7924 ; 0000-0001-6378-6977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thackray, Alice E.</creatorcontrib><creatorcontrib>Hinton, Elanor C.</creatorcontrib><creatorcontrib>Alanazi, Turki M.</creatorcontrib><creatorcontrib>Dera, Abdulrahman M.</creatorcontrib><creatorcontrib>Fujihara, Kyoko</creatorcontrib><creatorcontrib>Hamilton‐Shield, Julian P.</creatorcontrib><creatorcontrib>King, James A.</creatorcontrib><creatorcontrib>Lithander, Fiona E.</creatorcontrib><creatorcontrib>Miyashita, Masashi</creatorcontrib><creatorcontrib>Thompson, Julie</creatorcontrib><creatorcontrib>Morgan, Paul S.</creatorcontrib><creatorcontrib>Davies, Melanie J.</creatorcontrib><creatorcontrib>Stensel, David J.</creatorcontrib><title>Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Acute exercise suppresses appetite and alters food‐cue reactivity, but the extent exercise‐induced changes in cerebral blood flow (CBF) influences the blood‐oxygen‐level‐dependent (BOLD) signal during appetite‐related paradigms is not known. This study examined the impact of acute running on visual food‐cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five‐minute pseudo‐continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD‐fMRI was acquired during a food‐cue reactivity task before and 28 min after exercise/rest. Food‐cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time‐by‐trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate‐to‐large reductions in subjective appetite ratings (Cohen's d = 0.53–0.84; p ≤ .024) and increased food‐cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise‐induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food‐cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF. We investigated the impact of a single running bout on cerebral blood flow (CBF) and food cue reactivity using functional magnetic resonance imaging (fMRI) in healthy men. Running did not alter the time‐course of grey matter or regional CBF up to 30 min after exercise cessation but increased food cue reactivity in brain regions implicated in attention, reward and episodic memory retrieval. Exercise‐related BOLD signal changes were detected in the presence of underlying CBF.</description><subject>Acute effects</subject><subject>Amygdala</subject><subject>Appetite</subject><subject>Blood flow</subject><subject>Body fat</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Caudate-putamen</subject><subject>Cerebral blood flow</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Cortex (frontal)</subject><subject>Cross-Over Studies</subject><subject>Cues</subject><subject>Eating behavior</subject><subject>Exercise</subject><subject>fMRI</subject><subject>Food</subject><subject>food cue reactivity</subject><subject>Functional magnetic resonance imaging</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Maximum oxygen consumption</subject><subject>Metabolism</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Oxygen uptake</subject><subject>Physical fitness</subject><subject>Physical training</subject><subject>Questionnaires</subject><subject>Ratings</subject><subject>Running</subject><subject>Spin labeling</subject><subject>Substantia grisea</subject><subject>Time dependence</subject><subject>Variability</subject><subject>Visual stimuli</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhiMEoqWw4AWQJTawSGvHcS4rVKpCkYrYwNpyfMYnrhL74EtLXoTnZXJOqQAJS5bHnm9-jecvipeMnjJKq7NxmE-rhrP6UXHMaN-WlPX88Ro3ouzrlh0Vz2K8oZQxQdnT4oi3rBZ9I46Ln5c_dpMP1m1JGoEonRMQMAZ0isQbErJza9I7oiHAENREhsn7DTGTvyPKYbDedAYSQOlkb21aiHVkBDWlcSGLz1g_gyM5rkomO6S8Q6FZbR0kq7Ey4oPTQCy-IfW8eGLUFOHF_XlSfPtw-fXiqrz-8vHTxfl1qWtcpaj7Tre0oULzqsaQQw-Uq76jRmsqWqPAMOjaqhKd4HrD1aCo4A2rGU4O-Enx7qC7y8MMGw0u4Q_lLmAfYZFeWfl3xtlRbv2tZLSivO1bVHhzrxD89wwxydlGDdOkHPgcZdWhIxWle_T1P-iNzwEHsafaqsFdI_X2QOngYwxgHrphVK52S7Rb7u1G9tWf7T-Qv_1F4OwA3NkJlv8ryav3nw-SvwD8craO</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Thackray, Alice E.</creator><creator>Hinton, Elanor C.</creator><creator>Alanazi, Turki M.</creator><creator>Dera, Abdulrahman M.</creator><creator>Fujihara, Kyoko</creator><creator>Hamilton‐Shield, Julian P.</creator><creator>King, James A.</creator><creator>Lithander, Fiona E.</creator><creator>Miyashita, Masashi</creator><creator>Thompson, Julie</creator><creator>Morgan, Paul S.</creator><creator>Davies, Melanie J.</creator><creator>Stensel, David J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2793-8552</orcidid><orcidid>https://orcid.org/0000-0002-7800-3207</orcidid><orcidid>https://orcid.org/0000-0002-8174-9173</orcidid><orcidid>https://orcid.org/0000-0002-5870-1446</orcidid><orcidid>https://orcid.org/0000-0003-2601-7575</orcidid><orcidid>https://orcid.org/0000-0002-7656-641X</orcidid><orcidid>https://orcid.org/0000-0001-9119-8590</orcidid><orcidid>https://orcid.org/0000-0003-4542-7924</orcidid><orcidid>https://orcid.org/0000-0001-6378-6977</orcidid></search><sort><creationdate>20230615</creationdate><title>Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging</title><author>Thackray, Alice E. ; Hinton, Elanor C. ; Alanazi, Turki M. ; Dera, Abdulrahman M. ; Fujihara, Kyoko ; Hamilton‐Shield, Julian P. ; King, James A. ; Lithander, Fiona E. ; Miyashita, Masashi ; Thompson, Julie ; Morgan, Paul S. ; Davies, Melanie J. ; Stensel, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4444-5498c70605c3248c73e9e03a980fcc057faef1e87225853cd3aba0536141100e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acute effects</topic><topic>Amygdala</topic><topic>Appetite</topic><topic>Blood flow</topic><topic>Body fat</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Caudate-putamen</topic><topic>Cerebral blood flow</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Cortex (frontal)</topic><topic>Cross-Over Studies</topic><topic>Cues</topic><topic>Eating behavior</topic><topic>Exercise</topic><topic>fMRI</topic><topic>Food</topic><topic>food cue reactivity</topic><topic>Functional magnetic resonance imaging</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Maximum oxygen consumption</topic><topic>Metabolism</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Oxygen uptake</topic><topic>Physical fitness</topic><topic>Physical training</topic><topic>Questionnaires</topic><topic>Ratings</topic><topic>Running</topic><topic>Spin labeling</topic><topic>Substantia grisea</topic><topic>Time dependence</topic><topic>Variability</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thackray, Alice E.</creatorcontrib><creatorcontrib>Hinton, Elanor C.</creatorcontrib><creatorcontrib>Alanazi, Turki M.</creatorcontrib><creatorcontrib>Dera, Abdulrahman M.</creatorcontrib><creatorcontrib>Fujihara, Kyoko</creatorcontrib><creatorcontrib>Hamilton‐Shield, Julian P.</creatorcontrib><creatorcontrib>King, James A.</creatorcontrib><creatorcontrib>Lithander, Fiona E.</creatorcontrib><creatorcontrib>Miyashita, Masashi</creatorcontrib><creatorcontrib>Thompson, Julie</creatorcontrib><creatorcontrib>Morgan, Paul S.</creatorcontrib><creatorcontrib>Davies, Melanie J.</creatorcontrib><creatorcontrib>Stensel, David J.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thackray, Alice E.</au><au>Hinton, Elanor C.</au><au>Alanazi, Turki M.</au><au>Dera, Abdulrahman M.</au><au>Fujihara, Kyoko</au><au>Hamilton‐Shield, Julian P.</au><au>King, James A.</au><au>Lithander, Fiona E.</au><au>Miyashita, Masashi</au><au>Thompson, Julie</au><au>Morgan, Paul S.</au><au>Davies, Melanie J.</au><au>Stensel, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>44</volume><issue>9</issue><spage>3815</spage><epage>3832</epage><pages>3815-3832</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Acute exercise suppresses appetite and alters food‐cue reactivity, but the extent exercise‐induced changes in cerebral blood flow (CBF) influences the blood‐oxygen‐level‐dependent (BOLD) signal during appetite‐related paradigms is not known. This study examined the impact of acute running on visual food‐cue reactivity and explored whether such responses are influenced by CBF variability. In a randomised crossover design, 23 men (mean ± SD: 24 ± 4 years, 22.9 ± 2.1 kg/m2) completed fMRI scans before and after 60 min of running (68% ± 3% peak oxygen uptake) or rest (control). Five‐minute pseudo‐continuous arterial spin labelling fMRI scans were conducted for CBF assessment before and at four consecutive repeat acquisitions after exercise/rest. BOLD‐fMRI was acquired during a food‐cue reactivity task before and 28 min after exercise/rest. Food‐cue reactivity analysis was performed with and without CBF adjustment. Subjective appetite ratings were assessed before, during and after exercise/rest. Exercise CBF was higher in grey matter, the posterior insula and in the region of the amygdala/hippocampus, and lower in the medial orbitofrontal cortex and dorsal striatum than control (main effect trial p ≤ .018). No time‐by‐trial interactions for CBF were identified (p ≥ .087). Exercise induced moderate‐to‐large reductions in subjective appetite ratings (Cohen's d = 0.53–0.84; p ≤ .024) and increased food‐cue reactivity in the paracingulate gyrus, hippocampus, precuneous cortex, frontal pole and posterior cingulate gyrus. Accounting for CBF variability did not markedly alter detection of exercise‐induced BOLD signal changes. Acute running evoked overall changes in CBF that were not time dependent and increased food‐cue reactivity in regions implicated in attention, anticipation of reward, and episodic memory independent of CBF. We investigated the impact of a single running bout on cerebral blood flow (CBF) and food cue reactivity using functional magnetic resonance imaging (fMRI) in healthy men. Running did not alter the time‐course of grey matter or regional CBF up to 30 min after exercise cessation but increased food cue reactivity in brain regions implicated in attention, reward and episodic memory retrieval. Exercise‐related BOLD signal changes were detected in the presence of underlying CBF.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37145965</pmid><doi>10.1002/hbm.26314</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2793-8552</orcidid><orcidid>https://orcid.org/0000-0002-7800-3207</orcidid><orcidid>https://orcid.org/0000-0002-8174-9173</orcidid><orcidid>https://orcid.org/0000-0002-5870-1446</orcidid><orcidid>https://orcid.org/0000-0003-2601-7575</orcidid><orcidid>https://orcid.org/0000-0002-7656-641X</orcidid><orcidid>https://orcid.org/0000-0001-9119-8590</orcidid><orcidid>https://orcid.org/0000-0003-4542-7924</orcidid><orcidid>https://orcid.org/0000-0001-6378-6977</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2023-06, Vol.44 (9), p.3815-3832
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203797
source MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Acute effects
Amygdala
Appetite
Blood flow
Body fat
Brain
Brain - physiology
Caudate-putamen
Cerebral blood flow
Cerebrovascular Circulation - physiology
Cortex (frontal)
Cross-Over Studies
Cues
Eating behavior
Exercise
fMRI
Food
food cue reactivity
Functional magnetic resonance imaging
Hippocampus
Humans
Labeling
Laboratories
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Maximum oxygen consumption
Metabolism
Neostriatum
Neuroimaging
Oxygen
Oxygen consumption
Oxygen uptake
Physical fitness
Physical training
Questionnaires
Ratings
Running
Spin labeling
Substantia grisea
Time dependence
Variability
Visual stimuli
title Exploring the acute effects of running on cerebral blood flow and food cue reactivity in healthy young men using functional magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20acute%20effects%20of%20running%20on%20cerebral%20blood%20flow%20and%20food%20cue%20reactivity%20in%20healthy%20young%20men%20using%20functional%20magnetic%20resonance%20imaging&rft.jtitle=Human%20brain%20mapping&rft.au=Thackray,%20Alice%20E.&rft.date=2023-06-15&rft.volume=44&rft.issue=9&rft.spage=3815&rft.epage=3832&rft.pages=3815-3832&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26314&rft_dat=%3Cproquest_pubme%3E2817261724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817261724&rft_id=info:pmid/37145965&rfr_iscdi=true