Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection

Pathogen attack can increase plant levels of reactive oxygen species (ROS), which act as signaling molecules to activate plant defense mechanisms. Elucidating these processes is crucial for understanding redox signaling pathways in plant defense responses. Using an iodo-tandem mass tag (TMT)-based q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant communications 2023-05, Vol.4 (3), p.100550-100550, Article 100550
Hauptverfasser: Chen, Xiaoyang, Xu, Qiutao, Yue, Yaping, Duan, Yuhang, Liu, Hao, Chen, Xiaolin, Huang, Junbin, Zheng, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100550
container_issue 3
container_start_page 100550
container_title Plant communications
container_volume 4
creator Chen, Xiaoyang
Xu, Qiutao
Yue, Yaping
Duan, Yuhang
Liu, Hao
Chen, Xiaolin
Huang, Junbin
Zheng, Lu
description Pathogen attack can increase plant levels of reactive oxygen species (ROS), which act as signaling molecules to activate plant defense mechanisms. Elucidating these processes is crucial for understanding redox signaling pathways in plant defense responses. Using an iodo-tandem mass tag (TMT)-based quantitative proteomics approach, we mapped 3362 oxidized cysteine sites in 2275 proteins in rice leaves. Oxidized proteins were involved in gene expression, peptide biosynthetic processes, stress responses, ROS metabolic processes, and translation pathways. Magnaporthe oryzae infection led to increased oxidative modification levels of 512 cysteine sites in 438 proteins, including many transcriptional regulators and ribosomal proteins. Ribosome profiling (Ribo-seq) analysis revealed that the oxidative modification of ribosomal proteins promoted the translational efficiency of many mRNAs involved in defense response pathways, thereby affecting rice immunity. Our results suggest that increased oxidative modification of ribosomal proteins in rice leaves promotes cytosolic translation, thus revealing a novel function of post-translational modifications. Furthermore, the oxidation-sensitive proteins identified here provide a valuable resource for research on protein redox regulation and can guide future mechanistic studies. This study improves our understanding of oxidation-sensitive plant proteins. Oxidation levels of rice proteins are increased substantially upon fungal infection, and the increased oxidative modification of ribosomal proteins in leaves promotes cytosolic translation, revealing a novel function of post-translational modifications.
doi_str_mv 10.1016/j.xplc.2023.100550
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2590346223000482</els_id><sourcerecordid>2767170307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-75a2969f8106267b65508a07ab3a2e91966a53cd3dfe2547bc3c3d7ef91bbed73</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVqV_gAPykctu_RHbjYSE0AooUhEXOFuOPUm9cuxgJ6tdfgM_GkdZqnLhYo9m3rw3M6-qXhO8JZiIm_32OHqzpZiyksCc42fVJeUN3rBa0OdP4ovqOuc9xphyQgTjL6sLJgSvOW4uq9-7OIw66ckdAMWjsyWKAY0pThAHZzLSQftThozy3PeQJ5TAxmN5-9mv4Nghc5pijt4ZNCUd8rngAkrOAPKgD4VgHkvuq-6DHmOaHopeOv3SUGAdmKXhVfWi0z7D9fm_qn58-vh9d7e5__b5y-7D_cbUXEwbyTVtRNPdEiyokK0oy99qLHXLNIWGNEJozoxltgPKa9kaZpiV0DWkbcFKdlW9X3nHuR3AGghlaq_G5AadTipqp_6tBPeg-nhQBFPMas4Kw9szQ4o_53IVNbhswHsdIM5ZUSkkkZjhRYyuUJNizgm6Rx2C1WKl2qvFSrVYqVYrS9ObpxM-tvw1rgDerQAodzo4SCobB8GAdakcU9no_sf_B6patQk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767170307</pqid></control><display><type>article</type><title>Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Xiaoyang ; Xu, Qiutao ; Yue, Yaping ; Duan, Yuhang ; Liu, Hao ; Chen, Xiaolin ; Huang, Junbin ; Zheng, Lu</creator><creatorcontrib>Chen, Xiaoyang ; Xu, Qiutao ; Yue, Yaping ; Duan, Yuhang ; Liu, Hao ; Chen, Xiaolin ; Huang, Junbin ; Zheng, Lu</creatorcontrib><description>Pathogen attack can increase plant levels of reactive oxygen species (ROS), which act as signaling molecules to activate plant defense mechanisms. Elucidating these processes is crucial for understanding redox signaling pathways in plant defense responses. Using an iodo-tandem mass tag (TMT)-based quantitative proteomics approach, we mapped 3362 oxidized cysteine sites in 2275 proteins in rice leaves. Oxidized proteins were involved in gene expression, peptide biosynthetic processes, stress responses, ROS metabolic processes, and translation pathways. Magnaporthe oryzae infection led to increased oxidative modification levels of 512 cysteine sites in 438 proteins, including many transcriptional regulators and ribosomal proteins. Ribosome profiling (Ribo-seq) analysis revealed that the oxidative modification of ribosomal proteins promoted the translational efficiency of many mRNAs involved in defense response pathways, thereby affecting rice immunity. Our results suggest that increased oxidative modification of ribosomal proteins in rice leaves promotes cytosolic translation, thus revealing a novel function of post-translational modifications. Furthermore, the oxidation-sensitive proteins identified here provide a valuable resource for research on protein redox regulation and can guide future mechanistic studies. This study improves our understanding of oxidation-sensitive plant proteins. Oxidation levels of rice proteins are increased substantially upon fungal infection, and the increased oxidative modification of ribosomal proteins in leaves promotes cytosolic translation, revealing a novel function of post-translational modifications.</description><identifier>ISSN: 2590-3462</identifier><identifier>EISSN: 2590-3462</identifier><identifier>DOI: 10.1016/j.xplc.2023.100550</identifier><identifier>PMID: 36654509</identifier><language>eng</language><publisher>China: Elsevier Inc</publisher><subject>Cysteine - metabolism ; Disease Resistance ; immunity ; infection ; Magnaporthe - metabolism ; Oryza - metabolism ; Oxidation-Reduction ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; protein oxidation ; Proteomics - methods ; Reactive Oxygen Species - metabolism ; Ribosomal Proteins - genetics ; rice ; ROS ; translation</subject><ispartof>Plant communications, 2023-05, Vol.4 (3), p.100550-100550, Article 100550</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-75a2969f8106267b65508a07ab3a2e91966a53cd3dfe2547bc3c3d7ef91bbed73</citedby><cites>FETCH-LOGICAL-c456t-75a2969f8106267b65508a07ab3a2e91966a53cd3dfe2547bc3c3d7ef91bbed73</cites><orcidid>0000-0002-2414-1671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36654509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Xu, Qiutao</creatorcontrib><creatorcontrib>Yue, Yaping</creatorcontrib><creatorcontrib>Duan, Yuhang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Xiaolin</creatorcontrib><creatorcontrib>Huang, Junbin</creatorcontrib><creatorcontrib>Zheng, Lu</creatorcontrib><title>Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection</title><title>Plant communications</title><addtitle>Plant Commun</addtitle><description>Pathogen attack can increase plant levels of reactive oxygen species (ROS), which act as signaling molecules to activate plant defense mechanisms. Elucidating these processes is crucial for understanding redox signaling pathways in plant defense responses. Using an iodo-tandem mass tag (TMT)-based quantitative proteomics approach, we mapped 3362 oxidized cysteine sites in 2275 proteins in rice leaves. Oxidized proteins were involved in gene expression, peptide biosynthetic processes, stress responses, ROS metabolic processes, and translation pathways. Magnaporthe oryzae infection led to increased oxidative modification levels of 512 cysteine sites in 438 proteins, including many transcriptional regulators and ribosomal proteins. Ribosome profiling (Ribo-seq) analysis revealed that the oxidative modification of ribosomal proteins promoted the translational efficiency of many mRNAs involved in defense response pathways, thereby affecting rice immunity. Our results suggest that increased oxidative modification of ribosomal proteins in rice leaves promotes cytosolic translation, thus revealing a novel function of post-translational modifications. Furthermore, the oxidation-sensitive proteins identified here provide a valuable resource for research on protein redox regulation and can guide future mechanistic studies. This study improves our understanding of oxidation-sensitive plant proteins. Oxidation levels of rice proteins are increased substantially upon fungal infection, and the increased oxidative modification of ribosomal proteins in leaves promotes cytosolic translation, revealing a novel function of post-translational modifications.</description><subject>Cysteine - metabolism</subject><subject>Disease Resistance</subject><subject>immunity</subject><subject>infection</subject><subject>Magnaporthe - metabolism</subject><subject>Oryza - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>protein oxidation</subject><subject>Proteomics - methods</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Ribosomal Proteins - genetics</subject><subject>rice</subject><subject>ROS</subject><subject>translation</subject><issn>2590-3462</issn><issn>2590-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIVqV_gAPykctu_RHbjYSE0AooUhEXOFuOPUm9cuxgJ6tdfgM_GkdZqnLhYo9m3rw3M6-qXhO8JZiIm_32OHqzpZiyksCc42fVJeUN3rBa0OdP4ovqOuc9xphyQgTjL6sLJgSvOW4uq9-7OIw66ckdAMWjsyWKAY0pThAHZzLSQftThozy3PeQJ5TAxmN5-9mv4Nghc5pijt4ZNCUd8rngAkrOAPKgD4VgHkvuq-6DHmOaHopeOv3SUGAdmKXhVfWi0z7D9fm_qn58-vh9d7e5__b5y-7D_cbUXEwbyTVtRNPdEiyokK0oy99qLHXLNIWGNEJozoxltgPKa9kaZpiV0DWkbcFKdlW9X3nHuR3AGghlaq_G5AadTipqp_6tBPeg-nhQBFPMas4Kw9szQ4o_53IVNbhswHsdIM5ZUSkkkZjhRYyuUJNizgm6Rx2C1WKl2qvFSrVYqVYrS9ObpxM-tvw1rgDerQAodzo4SCobB8GAdakcU9no_sf_B6patQk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Chen, Xiaoyang</creator><creator>Xu, Qiutao</creator><creator>Yue, Yaping</creator><creator>Duan, Yuhang</creator><creator>Liu, Hao</creator><creator>Chen, Xiaolin</creator><creator>Huang, Junbin</creator><creator>Zheng, Lu</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2414-1671</orcidid></search><sort><creationdate>20230508</creationdate><title>Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection</title><author>Chen, Xiaoyang ; Xu, Qiutao ; Yue, Yaping ; Duan, Yuhang ; Liu, Hao ; Chen, Xiaolin ; Huang, Junbin ; Zheng, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-75a2969f8106267b65508a07ab3a2e91966a53cd3dfe2547bc3c3d7ef91bbed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cysteine - metabolism</topic><topic>Disease Resistance</topic><topic>immunity</topic><topic>infection</topic><topic>Magnaporthe - metabolism</topic><topic>Oryza - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>protein oxidation</topic><topic>Proteomics - methods</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Ribosomal Proteins - genetics</topic><topic>rice</topic><topic>ROS</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Xu, Qiutao</creatorcontrib><creatorcontrib>Yue, Yaping</creatorcontrib><creatorcontrib>Duan, Yuhang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Xiaolin</creatorcontrib><creatorcontrib>Huang, Junbin</creatorcontrib><creatorcontrib>Zheng, Lu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyang</au><au>Xu, Qiutao</au><au>Yue, Yaping</au><au>Duan, Yuhang</au><au>Liu, Hao</au><au>Chen, Xiaolin</au><au>Huang, Junbin</au><au>Zheng, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection</atitle><jtitle>Plant communications</jtitle><addtitle>Plant Commun</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>100550</spage><epage>100550</epage><pages>100550-100550</pages><artnum>100550</artnum><issn>2590-3462</issn><eissn>2590-3462</eissn><abstract>Pathogen attack can increase plant levels of reactive oxygen species (ROS), which act as signaling molecules to activate plant defense mechanisms. Elucidating these processes is crucial for understanding redox signaling pathways in plant defense responses. Using an iodo-tandem mass tag (TMT)-based quantitative proteomics approach, we mapped 3362 oxidized cysteine sites in 2275 proteins in rice leaves. Oxidized proteins were involved in gene expression, peptide biosynthetic processes, stress responses, ROS metabolic processes, and translation pathways. Magnaporthe oryzae infection led to increased oxidative modification levels of 512 cysteine sites in 438 proteins, including many transcriptional regulators and ribosomal proteins. Ribosome profiling (Ribo-seq) analysis revealed that the oxidative modification of ribosomal proteins promoted the translational efficiency of many mRNAs involved in defense response pathways, thereby affecting rice immunity. Our results suggest that increased oxidative modification of ribosomal proteins in rice leaves promotes cytosolic translation, thus revealing a novel function of post-translational modifications. Furthermore, the oxidation-sensitive proteins identified here provide a valuable resource for research on protein redox regulation and can guide future mechanistic studies. This study improves our understanding of oxidation-sensitive plant proteins. Oxidation levels of rice proteins are increased substantially upon fungal infection, and the increased oxidative modification of ribosomal proteins in leaves promotes cytosolic translation, revealing a novel function of post-translational modifications.</abstract><cop>China</cop><pub>Elsevier Inc</pub><pmid>36654509</pmid><doi>10.1016/j.xplc.2023.100550</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2414-1671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-3462
ispartof Plant communications, 2023-05, Vol.4 (3), p.100550-100550, Article 100550
issn 2590-3462
2590-3462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10203453
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Cysteine - metabolism
Disease Resistance
immunity
infection
Magnaporthe - metabolism
Oryza - metabolism
Oxidation-Reduction
Plant Leaves - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
protein oxidation
Proteomics - methods
Reactive Oxygen Species - metabolism
Ribosomal Proteins - genetics
rice
ROS
translation
title Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20oxidation%20proteomics%20analyses%20suggest%20redox%20regulation%20of%20cytosolic%20translation%20in%20rice%20leaves%20upon%20Magnaporthe%20oryzae%20infection&rft.jtitle=Plant%20communications&rft.au=Chen,%20Xiaoyang&rft.date=2023-05-08&rft.volume=4&rft.issue=3&rft.spage=100550&rft.epage=100550&rft.pages=100550-100550&rft.artnum=100550&rft.issn=2590-3462&rft.eissn=2590-3462&rft_id=info:doi/10.1016/j.xplc.2023.100550&rft_dat=%3Cproquest_pubme%3E2767170307%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767170307&rft_id=info:pmid/36654509&rft_els_id=S2590346223000482&rfr_iscdi=true