A calibration approach to transportability and data‐fusion with observational data
Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sam...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2022-10, Vol.41 (23), p.4511-4531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4531 |
---|---|
container_issue | 23 |
container_start_page | 4511 |
container_title | Statistics in medicine |
container_volume | 41 |
creator | Josey, Kevin P. Yang, Fan Ghosh, Debashis Raghavan, Sridharan |
description | Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data‐fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data‐fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides vs sulfonylureas—the two most common oral diabetes medication classes for initial treatment—on all‐cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes. |
doi_str_mv | 10.1002/sim.9523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691460477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-af42731a29d6c307e2670ff5c3b88cfb8a2237e3c087e45b7ded063ea406794b3</originalsourceid><addsrcrecordid>eNp1kctO3DAUhi0Egikg9QlQJDbdBI4vieNVhRAtSFQsStfWieN0jDJxaieDZtdH6DPyJHiGS2klVmfhz5_-c35CPlI4oQDsNLrFiSoY3yIzCkrmwIpqm8yASZmXkhZ75EOMdwCUFkzukj1eVKICVc3I7VlmsHN1wNH5PsNhCB7NPBt9Ngbs4-DDiLXr3LjKsG-yBkd8-P2nneIav3fjPPN1tGG5-Y_dBjggOy120R4-z33y48vF7fllfn3z9er87Do3giueYyuY5BSZakrDQVpWSmjbwvC6qkxbV8gYl5YbqKQVRS0b20DJLQoopRI13yefn7zDVC9sY2yfMnd6CG6BYaU9Ov3vS-_m-qdfagoMqOI0GT49G4L_Ndk46oWLxnYd9tZPUbNSUVGCkDKhx_-hd34KaeVEpRNzpQTjf4Um-BiDbV_TUNDrrnTqSq-7SujR2_Sv4Es5CcifgHvX2dW7Iv396ttG-Agjf5-n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715399423</pqid></control><display><type>article</type><title>A calibration approach to transportability and data‐fusion with observational data</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Josey, Kevin P. ; Yang, Fan ; Ghosh, Debashis ; Raghavan, Sridharan</creator><creatorcontrib>Josey, Kevin P. ; Yang, Fan ; Ghosh, Debashis ; Raghavan, Sridharan</creatorcontrib><description>Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data‐fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data‐fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides vs sulfonylureas—the two most common oral diabetes medication classes for initial treatment—on all‐cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9523</identifier><identifier>PMID: 35848098</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biguanides ; Calibration ; causal inference ; Causality ; covariate balance ; data‐fusion ; Diabetes ; Diabetes Mellitus - drug therapy ; Humans ; Selection Bias ; transportability ; type 2 diabetes ; Validity</subject><ispartof>Statistics in medicine, 2022-10, Vol.41 (23), p.4511-4531</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-af42731a29d6c307e2670ff5c3b88cfb8a2237e3c087e45b7ded063ea406794b3</citedby><cites>FETCH-LOGICAL-c4393-af42731a29d6c307e2670ff5c3b88cfb8a2237e3c087e45b7ded063ea406794b3</cites><orcidid>0000-0003-0643-4873 ; 0000-0001-6618-1316 ; 0000-0003-2490-6272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9523$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9523$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35848098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Josey, Kevin P.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Ghosh, Debashis</creatorcontrib><creatorcontrib>Raghavan, Sridharan</creatorcontrib><title>A calibration approach to transportability and data‐fusion with observational data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data‐fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data‐fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides vs sulfonylureas—the two most common oral diabetes medication classes for initial treatment—on all‐cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes.</description><subject>Biguanides</subject><subject>Calibration</subject><subject>causal inference</subject><subject>Causality</subject><subject>covariate balance</subject><subject>data‐fusion</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Humans</subject><subject>Selection Bias</subject><subject>transportability</subject><subject>type 2 diabetes</subject><subject>Validity</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3DAUhi0Egikg9QlQJDbdBI4vieNVhRAtSFQsStfWieN0jDJxaieDZtdH6DPyJHiGS2klVmfhz5_-c35CPlI4oQDsNLrFiSoY3yIzCkrmwIpqm8yASZmXkhZ75EOMdwCUFkzukj1eVKICVc3I7VlmsHN1wNH5PsNhCB7NPBt9Ngbs4-DDiLXr3LjKsG-yBkd8-P2nneIav3fjPPN1tGG5-Y_dBjggOy120R4-z33y48vF7fllfn3z9er87Do3giueYyuY5BSZakrDQVpWSmjbwvC6qkxbV8gYl5YbqKQVRS0b20DJLQoopRI13yefn7zDVC9sY2yfMnd6CG6BYaU9Ov3vS-_m-qdfagoMqOI0GT49G4L_Ndk46oWLxnYd9tZPUbNSUVGCkDKhx_-hd34KaeVEpRNzpQTjf4Um-BiDbV_TUNDrrnTqSq-7SujR2_Sv4Es5CcifgHvX2dW7Iv396ttG-Agjf5-n</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Josey, Kevin P.</creator><creator>Yang, Fan</creator><creator>Ghosh, Debashis</creator><creator>Raghavan, Sridharan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0643-4873</orcidid><orcidid>https://orcid.org/0000-0001-6618-1316</orcidid><orcidid>https://orcid.org/0000-0003-2490-6272</orcidid></search><sort><creationdate>20221015</creationdate><title>A calibration approach to transportability and data‐fusion with observational data</title><author>Josey, Kevin P. ; Yang, Fan ; Ghosh, Debashis ; Raghavan, Sridharan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-af42731a29d6c307e2670ff5c3b88cfb8a2237e3c087e45b7ded063ea406794b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biguanides</topic><topic>Calibration</topic><topic>causal inference</topic><topic>Causality</topic><topic>covariate balance</topic><topic>data‐fusion</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Humans</topic><topic>Selection Bias</topic><topic>transportability</topic><topic>type 2 diabetes</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Josey, Kevin P.</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Ghosh, Debashis</creatorcontrib><creatorcontrib>Raghavan, Sridharan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Josey, Kevin P.</au><au>Yang, Fan</au><au>Ghosh, Debashis</au><au>Raghavan, Sridharan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A calibration approach to transportability and data‐fusion with observational data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-10-15</date><risdate>2022</risdate><volume>41</volume><issue>23</issue><spage>4511</spage><epage>4531</epage><pages>4511-4531</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data‐fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data‐fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides vs sulfonylureas—the two most common oral diabetes medication classes for initial treatment—on all‐cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35848098</pmid><doi>10.1002/sim.9523</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0643-4873</orcidid><orcidid>https://orcid.org/0000-0001-6618-1316</orcidid><orcidid>https://orcid.org/0000-0003-2490-6272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2022-10, Vol.41 (23), p.4511-4531 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201931 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Biguanides Calibration causal inference Causality covariate balance data‐fusion Diabetes Diabetes Mellitus - drug therapy Humans Selection Bias transportability type 2 diabetes Validity |
title | A calibration approach to transportability and data‐fusion with observational data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20calibration%20approach%20to%20transportability%20and%20data%E2%80%90fusion%20with%20observational%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Josey,%20Kevin%20P.&rft.date=2022-10-15&rft.volume=41&rft.issue=23&rft.spage=4511&rft.epage=4531&rft.pages=4511-4531&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9523&rft_dat=%3Cproquest_pubme%3E2691460477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715399423&rft_id=info:pmid/35848098&rfr_iscdi=true |