Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2

Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-05, Vol.14 (19), p.4625-4630
Hauptverfasser: Gelfand, Natalia, Remacle, Francoise, Levine, Raphael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4630
container_issue 19
container_start_page 4625
container_title The journal of physical chemistry letters
container_volume 14
creator Gelfand, Natalia
Remacle, Francoise
Levine, Raphael D.
description Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.
doi_str_mv 10.1021/acs.jpclett.3c00666
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812506408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-7ee04f712d1ccc238bbf846d8c1ab1a284a71f488a0f63f71e2f3b1b4fedaae3</originalsourceid><addsrcrecordid>eNpVUU1vEzEQXSEQLYVfwMVHLpv6K17nhKrSAlIpqM3dGntnU0e7dlh7I-XOD6-bzYGe5mnmzXujeVX1mdEFo5xdgkuL7c71mPNCOEqVUm-qc7aSum6YXr79D59VH1LaFsqK6uZ9dSYaphTjy_Pq3wO6OFgfIPsYSOzIPbnKcUjEBwLkFwTfxb59Gdz06PIYg3fkMUPGRB79MPUFtcQeyNoPWD_gHsdUGvcxQOvBFllH_jzFHFufUnR-9vl2CDB4l46G_GP1roM-4adTvajWtzfr6x_13e_vP6-v7moQjch1g0hl1zDeMuccF9raTkvVasfAMuBaQsM6qTXQTolCRN4Jy6zssAVAcVF9nWV3kx2wdRjyCL3ZjX6A8WAiePN6EvyT2cS9Ke-mbKmaoiBmhd7jBk0crTd7ftw84qnfGHDGouFcaSOolCtZtr6cfMf4d8KUzeCTw76HgHFKhusSBVWS6kK9nKklXLON0xjKP4r_ywnMHJtz4uaUuHgGMKqjsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812506408</pqid></control><display><type>article</type><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><source>American Chemical Society Journals</source><creator>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</creator><creatorcontrib>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</creatorcontrib><description>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c00666</identifier><identifier>PMID: 37166125</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemistry ; Chimie ; Letter ; Physical Insights into Quantum Phenomena and Function ; Physical, chemical, mathematical &amp; earth Sciences ; Physique, chimie, mathématiques &amp; sciences de la terre</subject><ispartof>The journal of physical chemistry letters, 2023-05, Vol.14 (19), p.4625-4630</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5423-1582 ; 0000-0001-7434-5245 ; 0000-0002-3034-0028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c00666$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c00666$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Gelfand, Natalia</creatorcontrib><creatorcontrib>Remacle, Francoise</creatorcontrib><creatorcontrib>Levine, Raphael D.</creatorcontrib><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</description><subject>Chemistry</subject><subject>Chimie</subject><subject>Letter</subject><subject>Physical Insights into Quantum Phenomena and Function</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1vEzEQXSEQLYVfwMVHLpv6K17nhKrSAlIpqM3dGntnU0e7dlh7I-XOD6-bzYGe5mnmzXujeVX1mdEFo5xdgkuL7c71mPNCOEqVUm-qc7aSum6YXr79D59VH1LaFsqK6uZ9dSYaphTjy_Pq3wO6OFgfIPsYSOzIPbnKcUjEBwLkFwTfxb59Gdz06PIYg3fkMUPGRB79MPUFtcQeyNoPWD_gHsdUGvcxQOvBFllH_jzFHFufUnR-9vl2CDB4l46G_GP1roM-4adTvajWtzfr6x_13e_vP6-v7moQjch1g0hl1zDeMuccF9raTkvVasfAMuBaQsM6qTXQTolCRN4Jy6zssAVAcVF9nWV3kx2wdRjyCL3ZjX6A8WAiePN6EvyT2cS9Ke-mbKmaoiBmhd7jBk0crTd7ftw84qnfGHDGouFcaSOolCtZtr6cfMf4d8KUzeCTw76HgHFKhusSBVWS6kK9nKklXLON0xjKP4r_ywnMHJtz4uaUuHgGMKqjsA</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Gelfand, Natalia</creator><creator>Remacle, Francoise</creator><creator>Levine, Raphael D.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5423-1582</orcidid><orcidid>https://orcid.org/0000-0001-7434-5245</orcidid><orcidid>https://orcid.org/0000-0002-3034-0028</orcidid></search><sort><creationdate>20230518</creationdate><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><author>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-7ee04f712d1ccc238bbf846d8c1ab1a284a71f488a0f63f71e2f3b1b4fedaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chimie</topic><topic>Letter</topic><topic>Physical Insights into Quantum Phenomena and Function</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelfand, Natalia</creatorcontrib><creatorcontrib>Remacle, Francoise</creatorcontrib><creatorcontrib>Levine, Raphael D.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelfand, Natalia</au><au>Remacle, Francoise</au><au>Levine, Raphael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>14</volume><issue>19</issue><spage>4625</spage><epage>4630</epage><pages>4625-4630</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</abstract><pub>American Chemical Society</pub><pmid>37166125</pmid><doi>10.1021/acs.jpclett.3c00666</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5423-1582</orcidid><orcidid>https://orcid.org/0000-0001-7434-5245</orcidid><orcidid>https://orcid.org/0000-0002-3034-0028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-05, Vol.14 (19), p.4625-4630
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201567
source American Chemical Society Journals
subjects Chemistry
Chimie
Letter
Physical Insights into Quantum Phenomena and Function
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
title Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombination%20of%20N%20Atoms%20in%20a%20Manifold%20of%20Electronic%20States%20Simulated%20by%20Time-Reversed%20Nonadiabatic%20Photodissociation%20Dynamics%20of%20N2&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gelfand,%20Natalia&rft.date=2023-05-18&rft.volume=14&rft.issue=19&rft.spage=4625&rft.epage=4630&rft.pages=4625-4630&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c00666&rft_dat=%3Cproquest_pubme%3E2812506408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812506408&rft_id=info:pmid/37166125&rfr_iscdi=true