Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2
Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-05, Vol.14 (19), p.4625-4630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4630 |
---|---|
container_issue | 19 |
container_start_page | 4625 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Gelfand, Natalia Remacle, Francoise Levine, Raphael D. |
description | Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms. |
doi_str_mv | 10.1021/acs.jpclett.3c00666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812506408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-7ee04f712d1ccc238bbf846d8c1ab1a284a71f488a0f63f71e2f3b1b4fedaae3</originalsourceid><addsrcrecordid>eNpVUU1vEzEQXSEQLYVfwMVHLpv6K17nhKrSAlIpqM3dGntnU0e7dlh7I-XOD6-bzYGe5mnmzXujeVX1mdEFo5xdgkuL7c71mPNCOEqVUm-qc7aSum6YXr79D59VH1LaFsqK6uZ9dSYaphTjy_Pq3wO6OFgfIPsYSOzIPbnKcUjEBwLkFwTfxb59Gdz06PIYg3fkMUPGRB79MPUFtcQeyNoPWD_gHsdUGvcxQOvBFllH_jzFHFufUnR-9vl2CDB4l46G_GP1roM-4adTvajWtzfr6x_13e_vP6-v7moQjch1g0hl1zDeMuccF9raTkvVasfAMuBaQsM6qTXQTolCRN4Jy6zssAVAcVF9nWV3kx2wdRjyCL3ZjX6A8WAiePN6EvyT2cS9Ke-mbKmaoiBmhd7jBk0crTd7ftw84qnfGHDGouFcaSOolCtZtr6cfMf4d8KUzeCTw76HgHFKhusSBVWS6kK9nKklXLON0xjKP4r_ywnMHJtz4uaUuHgGMKqjsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812506408</pqid></control><display><type>article</type><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><source>American Chemical Society Journals</source><creator>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</creator><creatorcontrib>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</creatorcontrib><description>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c00666</identifier><identifier>PMID: 37166125</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemistry ; Chimie ; Letter ; Physical Insights into Quantum Phenomena and Function ; Physical, chemical, mathematical & earth Sciences ; Physique, chimie, mathématiques & sciences de la terre</subject><ispartof>The journal of physical chemistry letters, 2023-05, Vol.14 (19), p.4625-4630</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5423-1582 ; 0000-0001-7434-5245 ; 0000-0002-3034-0028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c00666$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c00666$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Gelfand, Natalia</creatorcontrib><creatorcontrib>Remacle, Francoise</creatorcontrib><creatorcontrib>Levine, Raphael D.</creatorcontrib><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</description><subject>Chemistry</subject><subject>Chimie</subject><subject>Letter</subject><subject>Physical Insights into Quantum Phenomena and Function</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1vEzEQXSEQLYVfwMVHLpv6K17nhKrSAlIpqM3dGntnU0e7dlh7I-XOD6-bzYGe5mnmzXujeVX1mdEFo5xdgkuL7c71mPNCOEqVUm-qc7aSum6YXr79D59VH1LaFsqK6uZ9dSYaphTjy_Pq3wO6OFgfIPsYSOzIPbnKcUjEBwLkFwTfxb59Gdz06PIYg3fkMUPGRB79MPUFtcQeyNoPWD_gHsdUGvcxQOvBFllH_jzFHFufUnR-9vl2CDB4l46G_GP1roM-4adTvajWtzfr6x_13e_vP6-v7moQjch1g0hl1zDeMuccF9raTkvVasfAMuBaQsM6qTXQTolCRN4Jy6zssAVAcVF9nWV3kx2wdRjyCL3ZjX6A8WAiePN6EvyT2cS9Ke-mbKmaoiBmhd7jBk0crTd7ftw84qnfGHDGouFcaSOolCtZtr6cfMf4d8KUzeCTw76HgHFKhusSBVWS6kK9nKklXLON0xjKP4r_ywnMHJtz4uaUuHgGMKqjsA</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Gelfand, Natalia</creator><creator>Remacle, Francoise</creator><creator>Levine, Raphael D.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5423-1582</orcidid><orcidid>https://orcid.org/0000-0001-7434-5245</orcidid><orcidid>https://orcid.org/0000-0002-3034-0028</orcidid></search><sort><creationdate>20230518</creationdate><title>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</title><author>Gelfand, Natalia ; Remacle, Francoise ; Levine, Raphael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-7ee04f712d1ccc238bbf846d8c1ab1a284a71f488a0f63f71e2f3b1b4fedaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chimie</topic><topic>Letter</topic><topic>Physical Insights into Quantum Phenomena and Function</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelfand, Natalia</creatorcontrib><creatorcontrib>Remacle, Francoise</creatorcontrib><creatorcontrib>Levine, Raphael D.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelfand, Natalia</au><au>Remacle, Francoise</au><au>Levine, Raphael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-05-18</date><risdate>2023</risdate><volume>14</volume><issue>19</issue><spage>4625</spage><epage>4630</epage><pages>4625-4630</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Following a single photon VUV absorption, the N2 molecule dissociates into distinct channels leading to N atoms of different reactivities. The optically accessible singlets are bound, and dissociation occurs through spin–orbit induced transfer to the triplets. There is a forest of coupled electronic states, and we here aim to trace a path along the nonadiabatic couplings toward a particular exit channel. To achieve this, we apply a time-reversed quantum dynamical approach that corresponds to a dissociation running back. It begins with an atom–atom relative motion in a particular product channel. Starting with a Gaussian wave packet at the dissociation region of N2 and propagating it backward in time, one can see the population transferring among the triplets due to a strong nonadiabatic interaction between these states. Simultaneously, the optically active singlets get populated because of spin–orbit coupling to the triplets. Thus, backward propagation traces the nonradiative association of nitrogen atoms.</abstract><pub>American Chemical Society</pub><pmid>37166125</pmid><doi>10.1021/acs.jpclett.3c00666</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5423-1582</orcidid><orcidid>https://orcid.org/0000-0001-7434-5245</orcidid><orcidid>https://orcid.org/0000-0002-3034-0028</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-05, Vol.14 (19), p.4625-4630 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10201567 |
source | American Chemical Society Journals |
subjects | Chemistry Chimie Letter Physical Insights into Quantum Phenomena and Function Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre |
title | Recombination of N Atoms in a Manifold of Electronic States Simulated by Time-Reversed Nonadiabatic Photodissociation Dynamics of N2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombination%20of%20N%20Atoms%20in%20a%20Manifold%20of%20Electronic%20States%20Simulated%20by%20Time-Reversed%20Nonadiabatic%20Photodissociation%20Dynamics%20of%20N2&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gelfand,%20Natalia&rft.date=2023-05-18&rft.volume=14&rft.issue=19&rft.spage=4625&rft.epage=4630&rft.pages=4625-4630&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c00666&rft_dat=%3Cproquest_pubme%3E2812506408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812506408&rft_id=info:pmid/37166125&rfr_iscdi=true |