Mapping human brain charts cross-sectionally and longitudinally
Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (20), p.e2216798120-e2216798120 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2216798120 |
---|---|
container_issue | 20 |
container_start_page | e2216798120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Di Biase, Maria A Tian, Ye Ella Bethlehem, Richard A I Seidlitz, Jakob Alexander-Bloch, Aaron F Yeo, B T Thomas Zalesky, Andrew |
description | Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories. |
doi_str_mv | 10.1073/pnas.2216798120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811569885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d6576518a964e6f96107b92b55ed791cc4defb68a4934f03f0e576d0d05976673</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EomU5c0ORuHAJHTteTxWq2KQiLnC2nMRpXaVOsBOk_ntCKetppJlvnubNQ-gMwxUGkU1ab-IVIZgLJTGBPTTGoHDKqYJ9NAYgIpWU0BE6inEFAIpJOESjTGDGJJdjNH00bev8Iln2a-OTPBjnk2JpQheTIjQxptEWnWu8qetNYnyZ1I1fuK4v3bZ1gg4qU0d7uqvH6OX25nl2n86f7h5m1_O0oIR0acmZ4AxLozi1vFJ8uD5XJGfMlkLhoqClrXIuDVUZrSCrwA4LJZTAlOBcZMdo-qnb9vnaloX1XTC1boNbm7DRjXH678S7pV40bxoDVpkSZFC43CmE5rW3sdNrFwtb18bbpo-aSIwZV1KyAb34h66aPgx-txTHGQEqB2rySW3_FGz1fQ0G_ZGO_khH_6QzbJz_NvHNf8WRvQMoDYtk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816132048</pqid></control><display><type>article</type><title>Mapping human brain charts cross-sectionally and longitudinally</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Biase, Maria A ; Tian, Ye Ella ; Bethlehem, Richard A I ; Seidlitz, Jakob ; Alexander-Bloch, Aaron F ; Yeo, B T Thomas ; Zalesky, Andrew</creator><creatorcontrib>Di Biase, Maria A ; Tian, Ye Ella ; Bethlehem, Richard A I ; Seidlitz, Jakob ; Alexander-Bloch, Aaron F ; Yeo, B T Thomas ; Zalesky, Andrew</creatorcontrib><description>Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2216798120</identifier><identifier>PMID: 37155868</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Age ; Aging ; Biological Sciences ; Brain ; Brain - diagnostic imaging ; Brain mapping ; Charts ; Cross-Sectional Studies ; Humans ; Longitudinal Studies ; Magnetic Resonance Imaging ; Medical imaging ; Neuroimaging ; Trajectory measurement</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (20), p.e2216798120-e2216798120</ispartof><rights>Copyright National Academy of Sciences May 16, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d6576518a964e6f96107b92b55ed791cc4defb68a4934f03f0e576d0d05976673</citedby><cites>FETCH-LOGICAL-c422t-d6576518a964e6f96107b92b55ed791cc4defb68a4934f03f0e576d0d05976673</cites><orcidid>0000-0002-7100-651X ; 0000-0002-0714-0685 ; 0000-0001-6554-1893 ; 0000-0002-0119-3276 ; 0000-0003-3107-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193972/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193972/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Biase, Maria A</creatorcontrib><creatorcontrib>Tian, Ye Ella</creatorcontrib><creatorcontrib>Bethlehem, Richard A I</creatorcontrib><creatorcontrib>Seidlitz, Jakob</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron F</creatorcontrib><creatorcontrib>Yeo, B T Thomas</creatorcontrib><creatorcontrib>Zalesky, Andrew</creatorcontrib><title>Mapping human brain charts cross-sectionally and longitudinally</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.</description><subject>Age</subject><subject>Aging</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Charts</subject><subject>Cross-Sectional Studies</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Trajectory measurement</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUlPwzAQhS0EomU5c0ORuHAJHTteTxWq2KQiLnC2nMRpXaVOsBOk_ntCKetppJlvnubNQ-gMwxUGkU1ab-IVIZgLJTGBPTTGoHDKqYJ9NAYgIpWU0BE6inEFAIpJOESjTGDGJJdjNH00bev8Iln2a-OTPBjnk2JpQheTIjQxptEWnWu8qetNYnyZ1I1fuK4v3bZ1gg4qU0d7uqvH6OX25nl2n86f7h5m1_O0oIR0acmZ4AxLozi1vFJ8uD5XJGfMlkLhoqClrXIuDVUZrSCrwA4LJZTAlOBcZMdo-qnb9vnaloX1XTC1boNbm7DRjXH678S7pV40bxoDVpkSZFC43CmE5rW3sdNrFwtb18bbpo-aSIwZV1KyAb34h66aPgx-txTHGQEqB2rySW3_FGz1fQ0G_ZGO_khH_6QzbJz_NvHNf8WRvQMoDYtk</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Di Biase, Maria A</creator><creator>Tian, Ye Ella</creator><creator>Bethlehem, Richard A I</creator><creator>Seidlitz, Jakob</creator><creator>Alexander-Bloch, Aaron F</creator><creator>Yeo, B T Thomas</creator><creator>Zalesky, Andrew</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7100-651X</orcidid><orcidid>https://orcid.org/0000-0002-0714-0685</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid><orcidid>https://orcid.org/0000-0002-0119-3276</orcidid><orcidid>https://orcid.org/0000-0003-3107-5550</orcidid></search><sort><creationdate>20230516</creationdate><title>Mapping human brain charts cross-sectionally and longitudinally</title><author>Di Biase, Maria A ; Tian, Ye Ella ; Bethlehem, Richard A I ; Seidlitz, Jakob ; Alexander-Bloch, Aaron F ; Yeo, B T Thomas ; Zalesky, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d6576518a964e6f96107b92b55ed791cc4defb68a4934f03f0e576d0d05976673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age</topic><topic>Aging</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Charts</topic><topic>Cross-Sectional Studies</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Biase, Maria A</creatorcontrib><creatorcontrib>Tian, Ye Ella</creatorcontrib><creatorcontrib>Bethlehem, Richard A I</creatorcontrib><creatorcontrib>Seidlitz, Jakob</creatorcontrib><creatorcontrib>Alexander-Bloch, Aaron F</creatorcontrib><creatorcontrib>Yeo, B T Thomas</creatorcontrib><creatorcontrib>Zalesky, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Biase, Maria A</au><au>Tian, Ye Ella</au><au>Bethlehem, Richard A I</au><au>Seidlitz, Jakob</au><au>Alexander-Bloch, Aaron F</au><au>Yeo, B T Thomas</au><au>Zalesky, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping human brain charts cross-sectionally and longitudinally</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>120</volume><issue>20</issue><spage>e2216798120</spage><epage>e2216798120</epage><pages>e2216798120-e2216798120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37155868</pmid><doi>10.1073/pnas.2216798120</doi><orcidid>https://orcid.org/0000-0002-7100-651X</orcidid><orcidid>https://orcid.org/0000-0002-0714-0685</orcidid><orcidid>https://orcid.org/0000-0001-6554-1893</orcidid><orcidid>https://orcid.org/0000-0002-0119-3276</orcidid><orcidid>https://orcid.org/0000-0003-3107-5550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (20), p.e2216798120-e2216798120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193972 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Age Aging Biological Sciences Brain Brain - diagnostic imaging Brain mapping Charts Cross-Sectional Studies Humans Longitudinal Studies Magnetic Resonance Imaging Medical imaging Neuroimaging Trajectory measurement |
title | Mapping human brain charts cross-sectionally and longitudinally |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20human%20brain%20charts%20cross-sectionally%20and%20longitudinally&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Di%20Biase,%20Maria%20A&rft.date=2023-05-16&rft.volume=120&rft.issue=20&rft.spage=e2216798120&rft.epage=e2216798120&rft.pages=e2216798120-e2216798120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2216798120&rft_dat=%3Cproquest_pubme%3E2811569885%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816132048&rft_id=info:pmid/37155868&rfr_iscdi=true |