ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway
Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (20), p.e2217451120-e2217451120 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2217451120 |
---|---|
container_issue | 20 |
container_start_page | e2217451120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Judith, Delphine Versapuech, Margaux Bejjani, Fabienne Palaric, Marjory Verlhac, Pauline Kuster, Aurelia Lepont, Leslie Gallois-Montbrun, Sarah Janvier, Katy Berlioz-Torrent, Clarisse |
description | Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection. |
doi_str_mv | 10.1073/pnas.2217451120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811569669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-10924cca928861fd21eb693674f669599a1b6919ae65e9c69f8c5143e1af92123</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotlbP3mSPelibyWuTk9TiCwoeWs8hprPtyna3braV_vemVOsDAmEmv_nmCx8h50CvgWa8v6xcuGYMMiEBGD0gXaAGUiUMPSRdSlmWasFEh5yE8EYpNVLTY9LhGUippeiS8WDyIJOAJfq2WGO5SbCauRmGZF00q5C22M6xwWlyO56w_q4qqiQeVyWjIR-mLoTaF66NzNK18w-3OSVHuSsDnn3dPfJyfzcZPqaj54en4WCUesF0m0anTHjvDNNaQT5lgK_KcJWJXCkjjXEQazAOlUTjlcm1lyA4gssNA8Z75Ganu1y9LnDqsWobV9plUyxcs7G1K-zfl6qY21m9tkDBcCN4VLjaKcz_zT0ORnbbo4JlRiu-hshefm1r6vcVhtYuiuCxLF2F9SpYpgGkMtF6RPs71Dd1CA3me22gdpub3eZmf3KLExe_v7Lnv4Pin6iRkrk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811569669</pqid></control><display><type>article</type><title>ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Judith, Delphine ; Versapuech, Margaux ; Bejjani, Fabienne ; Palaric, Marjory ; Verlhac, Pauline ; Kuster, Aurelia ; Lepont, Leslie ; Gallois-Montbrun, Sarah ; Janvier, Katy ; Berlioz-Torrent, Clarisse</creator><creatorcontrib>Judith, Delphine ; Versapuech, Margaux ; Bejjani, Fabienne ; Palaric, Marjory ; Verlhac, Pauline ; Kuster, Aurelia ; Lepont, Leslie ; Gallois-Montbrun, Sarah ; Janvier, Katy ; Berlioz-Torrent, Clarisse</creatorcontrib><description>Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2217451120</identifier><identifier>PMID: 37155854</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antiviral Agents - metabolism ; Biological Sciences ; Bone Marrow Stromal Antigen 2 ; Cell Membrane - metabolism ; GPI-Linked Proteins - genetics ; GPI-Linked Proteins - metabolism ; Human Immunodeficiency Virus Proteins - genetics ; Human Immunodeficiency Virus Proteins - metabolism ; Humans ; Life Sciences ; Viral Proteins - metabolism ; Viral Regulatory and Accessory Proteins - genetics ; Viral Regulatory and Accessory Proteins - metabolism ; Viruses - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (20), p.e2217451120-e2217451120</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-10924cca928861fd21eb693674f669599a1b6919ae65e9c69f8c5143e1af92123</citedby><cites>FETCH-LOGICAL-c428t-10924cca928861fd21eb693674f669599a1b6919ae65e9c69f8c5143e1af92123</cites><orcidid>0000-0002-3105-4736 ; 0000-0003-2098-4812 ; 0000-0002-5782-8154 ; 0000-0002-7870-1814 ; 0000-0002-1059-4645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193943/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193943/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04279863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Judith, Delphine</creatorcontrib><creatorcontrib>Versapuech, Margaux</creatorcontrib><creatorcontrib>Bejjani, Fabienne</creatorcontrib><creatorcontrib>Palaric, Marjory</creatorcontrib><creatorcontrib>Verlhac, Pauline</creatorcontrib><creatorcontrib>Kuster, Aurelia</creatorcontrib><creatorcontrib>Lepont, Leslie</creatorcontrib><creatorcontrib>Gallois-Montbrun, Sarah</creatorcontrib><creatorcontrib>Janvier, Katy</creatorcontrib><creatorcontrib>Berlioz-Torrent, Clarisse</creatorcontrib><title>ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.</description><subject>Antiviral Agents - metabolism</subject><subject>Biological Sciences</subject><subject>Bone Marrow Stromal Antigen 2</subject><subject>Cell Membrane - metabolism</subject><subject>GPI-Linked Proteins - genetics</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>Human Immunodeficiency Virus Proteins - genetics</subject><subject>Human Immunodeficiency Virus Proteins - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Viral Proteins - metabolism</subject><subject>Viral Regulatory and Accessory Proteins - genetics</subject><subject>Viral Regulatory and Accessory Proteins - metabolism</subject><subject>Viruses - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMotlbP3mSPelibyWuTk9TiCwoeWs8hprPtyna3braV_vemVOsDAmEmv_nmCx8h50CvgWa8v6xcuGYMMiEBGD0gXaAGUiUMPSRdSlmWasFEh5yE8EYpNVLTY9LhGUippeiS8WDyIJOAJfq2WGO5SbCauRmGZF00q5C22M6xwWlyO56w_q4qqiQeVyWjIR-mLoTaF66NzNK18w-3OSVHuSsDnn3dPfJyfzcZPqaj54en4WCUesF0m0anTHjvDNNaQT5lgK_KcJWJXCkjjXEQazAOlUTjlcm1lyA4gssNA8Z75Ganu1y9LnDqsWobV9plUyxcs7G1K-zfl6qY21m9tkDBcCN4VLjaKcz_zT0ORnbbo4JlRiu-hshefm1r6vcVhtYuiuCxLF2F9SpYpgGkMtF6RPs71Dd1CA3me22gdpub3eZmf3KLExe_v7Lnv4Pin6iRkrk</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Judith, Delphine</creator><creator>Versapuech, Margaux</creator><creator>Bejjani, Fabienne</creator><creator>Palaric, Marjory</creator><creator>Verlhac, Pauline</creator><creator>Kuster, Aurelia</creator><creator>Lepont, Leslie</creator><creator>Gallois-Montbrun, Sarah</creator><creator>Janvier, Katy</creator><creator>Berlioz-Torrent, Clarisse</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3105-4736</orcidid><orcidid>https://orcid.org/0000-0003-2098-4812</orcidid><orcidid>https://orcid.org/0000-0002-5782-8154</orcidid><orcidid>https://orcid.org/0000-0002-7870-1814</orcidid><orcidid>https://orcid.org/0000-0002-1059-4645</orcidid></search><sort><creationdate>20230516</creationdate><title>ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway</title><author>Judith, Delphine ; Versapuech, Margaux ; Bejjani, Fabienne ; Palaric, Marjory ; Verlhac, Pauline ; Kuster, Aurelia ; Lepont, Leslie ; Gallois-Montbrun, Sarah ; Janvier, Katy ; Berlioz-Torrent, Clarisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-10924cca928861fd21eb693674f669599a1b6919ae65e9c69f8c5143e1af92123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiviral Agents - metabolism</topic><topic>Biological Sciences</topic><topic>Bone Marrow Stromal Antigen 2</topic><topic>Cell Membrane - metabolism</topic><topic>GPI-Linked Proteins - genetics</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>Human Immunodeficiency Virus Proteins - genetics</topic><topic>Human Immunodeficiency Virus Proteins - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Viral Proteins - metabolism</topic><topic>Viral Regulatory and Accessory Proteins - genetics</topic><topic>Viral Regulatory and Accessory Proteins - metabolism</topic><topic>Viruses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Judith, Delphine</creatorcontrib><creatorcontrib>Versapuech, Margaux</creatorcontrib><creatorcontrib>Bejjani, Fabienne</creatorcontrib><creatorcontrib>Palaric, Marjory</creatorcontrib><creatorcontrib>Verlhac, Pauline</creatorcontrib><creatorcontrib>Kuster, Aurelia</creatorcontrib><creatorcontrib>Lepont, Leslie</creatorcontrib><creatorcontrib>Gallois-Montbrun, Sarah</creatorcontrib><creatorcontrib>Janvier, Katy</creatorcontrib><creatorcontrib>Berlioz-Torrent, Clarisse</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Judith, Delphine</au><au>Versapuech, Margaux</au><au>Bejjani, Fabienne</au><au>Palaric, Marjory</au><au>Verlhac, Pauline</au><au>Kuster, Aurelia</au><au>Lepont, Leslie</au><au>Gallois-Montbrun, Sarah</au><au>Janvier, Katy</au><au>Berlioz-Torrent, Clarisse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>120</volume><issue>20</issue><spage>e2217451120</spage><epage>e2217451120</epage><pages>e2217451120-e2217451120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37155854</pmid><doi>10.1073/pnas.2217451120</doi><orcidid>https://orcid.org/0000-0002-3105-4736</orcidid><orcidid>https://orcid.org/0000-0003-2098-4812</orcidid><orcidid>https://orcid.org/0000-0002-5782-8154</orcidid><orcidid>https://orcid.org/0000-0002-7870-1814</orcidid><orcidid>https://orcid.org/0000-0002-1059-4645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (20), p.e2217451120-e2217451120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193943 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Antiviral Agents - metabolism Biological Sciences Bone Marrow Stromal Antigen 2 Cell Membrane - metabolism GPI-Linked Proteins - genetics GPI-Linked Proteins - metabolism Human Immunodeficiency Virus Proteins - genetics Human Immunodeficiency Virus Proteins - metabolism Humans Life Sciences Viral Proteins - metabolism Viral Regulatory and Accessory Proteins - genetics Viral Regulatory and Accessory Proteins - metabolism Viruses - metabolism |
title | ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATG5%20selectively%20engages%20virus-tethered%20BST2/tetherin%20in%20an%20LC3C-associated%20pathway&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Judith,%20Delphine&rft.date=2023-05-16&rft.volume=120&rft.issue=20&rft.spage=e2217451120&rft.epage=e2217451120&rft.pages=e2217451120-e2217451120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2217451120&rft_dat=%3Cproquest_pubme%3E2811569669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811569669&rft_id=info:pmid/37155854&rfr_iscdi=true |