γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples

The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ‐aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2023-06, Vol.24 (6), p.588-601
Hauptverfasser: Li, Yuxing, Cui, Yinglian, Liu, Boyang, Xu, Ruixuan, Shi, Yanjiao, Lv, Lingling, Wang, Hongtao, Shang, Yueming, Liang, Wei, Ma, Fengwang, Li, Cuiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 6
container_start_page 588
container_title Molecular plant pathology
container_volume 24
creator Li, Yuxing
Cui, Yinglian
Liu, Boyang
Xu, Ruixuan
Shi, Yanjiao
Lv, Lingling
Wang, Hongtao
Shang, Yueming
Liang, Wei
Ma, Fengwang
Li, Cuiying
description The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ‐aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one‐hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, β‐glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA. MdWRKY33‐MdGAD1 module‐mediated γ‐aminobutyric acid synthesis is critical for apple Glomerella leaf spot resistance by affecting antioxidant capacity.
doi_str_mv 10.1111/mpp.13325
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10189761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814268958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4445-1cce5caad9cdadd47129853752b3f092088c0bb083aa788be02a29bf8b9f76b23</originalsourceid><addsrcrecordid>eNp1kUtOHDEQhq0oEa-w4ALIUlYshvGjH_YKoVFCkCaCRVhbZbcbDO52Y_cQ9Y4j5C7cI4fISWIYgmCBN1VSffpcqh-hPUoOaX7zbhgOKees_IC2KK-KGa8J_5j7IvdVzdgm2k7pmhBaS1ZuoE1eSc5EVW2hiz8Pf-9_H3euD3o1TtEZDMY1ePAwJQz4xk44Bm-x6zF4b-8cjK6_xCc-dDZa7wF7Cy1OQxifmGHwNn1Gn1rwye4-1x108e3rz8X32fLs5HRxvJyZoijKGTXGlgagkaaBpilqyqQoeV0yzVsiGRHCEK2J4AC1ENoSBkzqVmjZ1pVmfAcdrb3DSne2MbYfI3g1RNdBnFQAp95OenelLsOdooQKWVc0G748G2K4Xdk0quuwin1eWjFBC1YJWYpMHawpE0NK0bYvX1CiHiNQOQL1FEFm91_v9EL-v3kG5mvgl_N2et-kfpyfr5X_AEMjk1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814268958</pqid></control><display><type>article</type><title>γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Yuxing ; Cui, Yinglian ; Liu, Boyang ; Xu, Ruixuan ; Shi, Yanjiao ; Lv, Lingling ; Wang, Hongtao ; Shang, Yueming ; Liang, Wei ; Ma, Fengwang ; Li, Cuiying</creator><creatorcontrib>Li, Yuxing ; Cui, Yinglian ; Liu, Boyang ; Xu, Ruixuan ; Shi, Yanjiao ; Lv, Lingling ; Wang, Hongtao ; Shang, Yueming ; Liang, Wei ; Ma, Fengwang ; Li, Cuiying</creatorcontrib><description>The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ‐aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one‐hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, β‐glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA. MdWRKY33‐MdGAD1 module‐mediated γ‐aminobutyric acid synthesis is critical for apple Glomerella leaf spot resistance by affecting antioxidant capacity.</description><identifier>ISSN: 1464-6722</identifier><identifier>EISSN: 1364-3703</identifier><identifier>DOI: 10.1111/mpp.13325</identifier><identifier>PMID: 36932866</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Abiotic stress ; Amino acids ; Amino Acids - metabolism ; Antioxidants ; Antioxidants - metabolism ; apple ; Apples ; Biosynthesis ; Disease ; Electrophoretic mobility ; Enzymes ; Fruits ; Fungal diseases ; GABA ; gamma-Aminobutyric Acid - metabolism ; Genotype &amp; phenotype ; Glomerella leaf spot ; Infections ; Leafspot ; Leaves ; Localization ; Malus - microbiology ; Metabolism ; Metabolites ; Molecular modelling ; Original ; Pathogens ; Phyllachorales - metabolism ; Plant resistance ; transcriptional regulation ; Variance analysis ; Yeasts ; γ-Aminobutyric acid</subject><ispartof>Molecular plant pathology, 2023-06, Vol.24 (6), p.588-601</ispartof><rights>2023 The Authors. published by British Society for Plant Pathology and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4445-1cce5caad9cdadd47129853752b3f092088c0bb083aa788be02a29bf8b9f76b23</citedby><cites>FETCH-LOGICAL-c4445-1cce5caad9cdadd47129853752b3f092088c0bb083aa788be02a29bf8b9f76b23</cites><orcidid>0000-0003-0608-2521 ; 0000-0002-1236-0324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189761/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189761/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36932866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuxing</creatorcontrib><creatorcontrib>Cui, Yinglian</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Xu, Ruixuan</creatorcontrib><creatorcontrib>Shi, Yanjiao</creatorcontrib><creatorcontrib>Lv, Lingling</creatorcontrib><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Shang, Yueming</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><creatorcontrib>Li, Cuiying</creatorcontrib><title>γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples</title><title>Molecular plant pathology</title><addtitle>Mol Plant Pathol</addtitle><description>The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ‐aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one‐hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, β‐glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA. MdWRKY33‐MdGAD1 module‐mediated γ‐aminobutyric acid synthesis is critical for apple Glomerella leaf spot resistance by affecting antioxidant capacity.</description><subject>Abiotic stress</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>apple</subject><subject>Apples</subject><subject>Biosynthesis</subject><subject>Disease</subject><subject>Electrophoretic mobility</subject><subject>Enzymes</subject><subject>Fruits</subject><subject>Fungal diseases</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genotype &amp; phenotype</subject><subject>Glomerella leaf spot</subject><subject>Infections</subject><subject>Leafspot</subject><subject>Leaves</subject><subject>Localization</subject><subject>Malus - microbiology</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>Original</subject><subject>Pathogens</subject><subject>Phyllachorales - metabolism</subject><subject>Plant resistance</subject><subject>transcriptional regulation</subject><subject>Variance analysis</subject><subject>Yeasts</subject><subject>γ-Aminobutyric acid</subject><issn>1464-6722</issn><issn>1364-3703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtOHDEQhq0oEa-w4ALIUlYshvGjH_YKoVFCkCaCRVhbZbcbDO52Y_cQ9Y4j5C7cI4fISWIYgmCBN1VSffpcqh-hPUoOaX7zbhgOKees_IC2KK-KGa8J_5j7IvdVzdgm2k7pmhBaS1ZuoE1eSc5EVW2hiz8Pf-9_H3euD3o1TtEZDMY1ePAwJQz4xk44Bm-x6zF4b-8cjK6_xCc-dDZa7wF7Cy1OQxifmGHwNn1Gn1rwye4-1x108e3rz8X32fLs5HRxvJyZoijKGTXGlgagkaaBpilqyqQoeV0yzVsiGRHCEK2J4AC1ENoSBkzqVmjZ1pVmfAcdrb3DSne2MbYfI3g1RNdBnFQAp95OenelLsOdooQKWVc0G748G2K4Xdk0quuwin1eWjFBC1YJWYpMHawpE0NK0bYvX1CiHiNQOQL1FEFm91_v9EL-v3kG5mvgl_N2et-kfpyfr5X_AEMjk1M</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Li, Yuxing</creator><creator>Cui, Yinglian</creator><creator>Liu, Boyang</creator><creator>Xu, Ruixuan</creator><creator>Shi, Yanjiao</creator><creator>Lv, Lingling</creator><creator>Wang, Hongtao</creator><creator>Shang, Yueming</creator><creator>Liang, Wei</creator><creator>Ma, Fengwang</creator><creator>Li, Cuiying</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0608-2521</orcidid><orcidid>https://orcid.org/0000-0002-1236-0324</orcidid></search><sort><creationdate>202306</creationdate><title>γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples</title><author>Li, Yuxing ; Cui, Yinglian ; Liu, Boyang ; Xu, Ruixuan ; Shi, Yanjiao ; Lv, Lingling ; Wang, Hongtao ; Shang, Yueming ; Liang, Wei ; Ma, Fengwang ; Li, Cuiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4445-1cce5caad9cdadd47129853752b3f092088c0bb083aa788be02a29bf8b9f76b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abiotic stress</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>apple</topic><topic>Apples</topic><topic>Biosynthesis</topic><topic>Disease</topic><topic>Electrophoretic mobility</topic><topic>Enzymes</topic><topic>Fruits</topic><topic>Fungal diseases</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genotype &amp; phenotype</topic><topic>Glomerella leaf spot</topic><topic>Infections</topic><topic>Leafspot</topic><topic>Leaves</topic><topic>Localization</topic><topic>Malus - microbiology</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>Original</topic><topic>Pathogens</topic><topic>Phyllachorales - metabolism</topic><topic>Plant resistance</topic><topic>transcriptional regulation</topic><topic>Variance analysis</topic><topic>Yeasts</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuxing</creatorcontrib><creatorcontrib>Cui, Yinglian</creatorcontrib><creatorcontrib>Liu, Boyang</creatorcontrib><creatorcontrib>Xu, Ruixuan</creatorcontrib><creatorcontrib>Shi, Yanjiao</creatorcontrib><creatorcontrib>Lv, Lingling</creatorcontrib><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Shang, Yueming</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><creatorcontrib>Li, Cuiying</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuxing</au><au>Cui, Yinglian</au><au>Liu, Boyang</au><au>Xu, Ruixuan</au><au>Shi, Yanjiao</au><au>Lv, Lingling</au><au>Wang, Hongtao</au><au>Shang, Yueming</au><au>Liang, Wei</au><au>Ma, Fengwang</au><au>Li, Cuiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples</atitle><jtitle>Molecular plant pathology</jtitle><addtitle>Mol Plant Pathol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>588</spage><epage>601</epage><pages>588-601</pages><issn>1464-6722</issn><eissn>1364-3703</eissn><abstract>The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ‐aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one‐hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, β‐glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA. MdWRKY33‐MdGAD1 module‐mediated γ‐aminobutyric acid synthesis is critical for apple Glomerella leaf spot resistance by affecting antioxidant capacity.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36932866</pmid><doi>10.1111/mpp.13325</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0608-2521</orcidid><orcidid>https://orcid.org/0000-0002-1236-0324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-6722
ispartof Molecular plant pathology, 2023-06, Vol.24 (6), p.588-601
issn 1464-6722
1364-3703
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10189761
source MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Abiotic stress
Amino acids
Amino Acids - metabolism
Antioxidants
Antioxidants - metabolism
apple
Apples
Biosynthesis
Disease
Electrophoretic mobility
Enzymes
Fruits
Fungal diseases
GABA
gamma-Aminobutyric Acid - metabolism
Genotype & phenotype
Glomerella leaf spot
Infections
Leafspot
Leaves
Localization
Malus - microbiology
Metabolism
Metabolites
Molecular modelling
Original
Pathogens
Phyllachorales - metabolism
Plant resistance
transcriptional regulation
Variance analysis
Yeasts
γ-Aminobutyric acid
title γ‐Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3%E2%80%90Aminobutyric%20acid%20plays%20a%20key%20role%20in%20alleviating%20Glomerella%20leaf%20spot%20in%20apples&rft.jtitle=Molecular%20plant%20pathology&rft.au=Li,%20Yuxing&rft.date=2023-06&rft.volume=24&rft.issue=6&rft.spage=588&rft.epage=601&rft.pages=588-601&rft.issn=1464-6722&rft.eissn=1364-3703&rft_id=info:doi/10.1111/mpp.13325&rft_dat=%3Cproquest_pubme%3E2814268958%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814268958&rft_id=info:pmid/36932866&rfr_iscdi=true