Extracellular vesicles: The next generation in gene therapy delivery
Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutiv...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2023-05, Vol.31 (5), p.1225-1230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1230 |
---|---|
container_issue | 5 |
container_start_page | 1225 |
container_title | Molecular therapy |
container_volume | 31 |
creator | Cecchin, Riccardo Troyer, Zach Witwer, Ken Morris, Kevin V. |
description | Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology—including cellular production, EV loading, systemic distribution, and cell delivery—is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.
[Display omitted]
We describe here the use of extracellular vesicles (EVs) as RNA and protein delivery vehicles. We outline the advantages and disadvantage to using EVs as delivery vehicles and posit that EVs will emerge as a bona fide next-generation gene and cell therapy delivery approach. |
doi_str_mv | 10.1016/j.ymthe.2023.01.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001623000217</els_id><sourcerecordid>2769994998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b168607787e24adfb68cd2c96ca23671c213f6f1bc9a705f71abccdeb29581823</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBCIlsIXIKEcuSR4ncaJkRBCpTykSlzK2XKcTesqTYqdVu3f4z6o4MJpd-XZmfUMIddAI6DA72bRZt5OMWKUxRGFiDI4IV1IWBJSyvqnxx54h1w4N_MdJIKfk07MuchioF3yPFy3VmmsqmWlbLBCZ3SF7j4YTzGocd0GE6zRqtY0dWDq3RR4VasWm6DAyqzQbi7JWakqh1eH2iOfL8Px4C0cfby-D55Goe5z2oY58IzTNM1SZH1VlDnPdMG04FqxmKegGcQlLyHXQqU0KVNQudYF5kwkGWQs7pHHPe9imc-x0Fj72yu5sGau7EY2ysi_L7WZykmzkt6vLOMxeIbbA4NtvpboWjk3bvt7VWOzdJKlXAjRF96dHon3UG0b5yyWRx2gW0IuZ3IXgNwGIClIH4Dfuvl94nHnx3EPeNgD0Bu1Mmil0wZrjYWxqFtZNOZfgW9NmZmX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769994998</pqid></control><display><type>article</type><title>Extracellular vesicles: The next generation in gene therapy delivery</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cecchin, Riccardo ; Troyer, Zach ; Witwer, Ken ; Morris, Kevin V.</creator><creatorcontrib>Cecchin, Riccardo ; Troyer, Zach ; Witwer, Ken ; Morris, Kevin V.</creatorcontrib><description>Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology—including cellular production, EV loading, systemic distribution, and cell delivery—is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.
[Display omitted]
We describe here the use of extracellular vesicles (EVs) as RNA and protein delivery vehicles. We outline the advantages and disadvantage to using EVs as delivery vehicles and posit that EVs will emerge as a bona fide next-generation gene and cell therapy delivery approach.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2023.01.021</identifier><identifier>PMID: 36698310</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell targeting ; ectosomes ; exosomes ; extracellular vesicles ; Extracellular Vesicles - metabolism ; Genetic Therapy ; nanoparticle ; Nanoparticles ; non-coding RNA ; Proteins - metabolism ; Review ; RNA - metabolism</subject><ispartof>Molecular therapy, 2023-05, Vol.31 (5), p.1225-1230</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b168607787e24adfb68cd2c96ca23671c213f6f1bc9a705f71abccdeb29581823</citedby><cites>FETCH-LOGICAL-c460t-b168607787e24adfb68cd2c96ca23671c213f6f1bc9a705f71abccdeb29581823</cites><orcidid>0000-0002-0157-0553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188631/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188631/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36698310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cecchin, Riccardo</creatorcontrib><creatorcontrib>Troyer, Zach</creatorcontrib><creatorcontrib>Witwer, Ken</creatorcontrib><creatorcontrib>Morris, Kevin V.</creatorcontrib><title>Extracellular vesicles: The next generation in gene therapy delivery</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology—including cellular production, EV loading, systemic distribution, and cell delivery—is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.
[Display omitted]
We describe here the use of extracellular vesicles (EVs) as RNA and protein delivery vehicles. We outline the advantages and disadvantage to using EVs as delivery vehicles and posit that EVs will emerge as a bona fide next-generation gene and cell therapy delivery approach.</description><subject>cell targeting</subject><subject>ectosomes</subject><subject>exosomes</subject><subject>extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Genetic Therapy</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>non-coding RNA</subject><subject>Proteins - metabolism</subject><subject>Review</subject><subject>RNA - metabolism</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOwzAQtBCIlsIXIKEcuSR4ncaJkRBCpTykSlzK2XKcTesqTYqdVu3f4z6o4MJpd-XZmfUMIddAI6DA72bRZt5OMWKUxRGFiDI4IV1IWBJSyvqnxx54h1w4N_MdJIKfk07MuchioF3yPFy3VmmsqmWlbLBCZ3SF7j4YTzGocd0GE6zRqtY0dWDq3RR4VasWm6DAyqzQbi7JWakqh1eH2iOfL8Px4C0cfby-D55Goe5z2oY58IzTNM1SZH1VlDnPdMG04FqxmKegGcQlLyHXQqU0KVNQudYF5kwkGWQs7pHHPe9imc-x0Fj72yu5sGau7EY2ysi_L7WZykmzkt6vLOMxeIbbA4NtvpboWjk3bvt7VWOzdJKlXAjRF96dHon3UG0b5yyWRx2gW0IuZ3IXgNwGIClIH4Dfuvl94nHnx3EPeNgD0Bu1Mmil0wZrjYWxqFtZNOZfgW9NmZmX</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Cecchin, Riccardo</creator><creator>Troyer, Zach</creator><creator>Witwer, Ken</creator><creator>Morris, Kevin V.</creator><general>Elsevier Inc</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0157-0553</orcidid></search><sort><creationdate>20230503</creationdate><title>Extracellular vesicles: The next generation in gene therapy delivery</title><author>Cecchin, Riccardo ; Troyer, Zach ; Witwer, Ken ; Morris, Kevin V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b168607787e24adfb68cd2c96ca23671c213f6f1bc9a705f71abccdeb29581823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cell targeting</topic><topic>ectosomes</topic><topic>exosomes</topic><topic>extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Genetic Therapy</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>non-coding RNA</topic><topic>Proteins - metabolism</topic><topic>Review</topic><topic>RNA - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cecchin, Riccardo</creatorcontrib><creatorcontrib>Troyer, Zach</creatorcontrib><creatorcontrib>Witwer, Ken</creatorcontrib><creatorcontrib>Morris, Kevin V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cecchin, Riccardo</au><au>Troyer, Zach</au><au>Witwer, Ken</au><au>Morris, Kevin V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular vesicles: The next generation in gene therapy delivery</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>31</volume><issue>5</issue><spage>1225</spage><epage>1230</epage><pages>1225-1230</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology—including cellular production, EV loading, systemic distribution, and cell delivery—is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.
[Display omitted]
We describe here the use of extracellular vesicles (EVs) as RNA and protein delivery vehicles. We outline the advantages and disadvantage to using EVs as delivery vehicles and posit that EVs will emerge as a bona fide next-generation gene and cell therapy delivery approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36698310</pmid><doi>10.1016/j.ymthe.2023.01.021</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0157-0553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2023-05, Vol.31 (5), p.1225-1230 |
issn | 1525-0016 1525-0024 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188631 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | cell targeting ectosomes exosomes extracellular vesicles Extracellular Vesicles - metabolism Genetic Therapy nanoparticle Nanoparticles non-coding RNA Proteins - metabolism Review RNA - metabolism |
title | Extracellular vesicles: The next generation in gene therapy delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20vesicles:%20The%20next%20generation%20in%20gene%20therapy%20delivery&rft.jtitle=Molecular%20therapy&rft.au=Cecchin,%20Riccardo&rft.date=2023-05-03&rft.volume=31&rft.issue=5&rft.spage=1225&rft.epage=1230&rft.pages=1225-1230&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2023.01.021&rft_dat=%3Cproquest_pubme%3E2769994998%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769994998&rft_id=info:pmid/36698310&rft_els_id=S1525001623000217&rfr_iscdi=true |