Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach
Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly inf...
Gespeichert in:
Veröffentlicht in: | Radiation and environmental biophysics 2023-05, Vol.62 (2), p.221-234 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Radiation and environmental biophysics |
container_volume | 62 |
creator | Papadopoulos, Alexis Kyriakou, Ioanna Incerti, Sébastien Santin, Giovanni Nieminen, Petteri Daglis, Ioannis A. Li, Weibo Emfietzoglou, Dimitris |
description | Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor,
Q
, which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy (
y
). In the present work, the average
Q
of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA’s OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0–30 g/cm
2
) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions (
Z
≥
1
) in 1 μm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based
Q
-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based
Q
-values and up to 3% and 6% from NASA’s
Q
-model. In addition, they were found to be in good agreement with the
Q
-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit. |
doi_str_mv | 10.1007/s00411-023-01023-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801977043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-cd5328d52cbdce75a08274768edbb693b7066df4a7570a595ede10aeeec4e13c3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQtRCILgt_gAOyxKUcAuOPxMkJVSvaIq2ExIfEzZo4zq6rbJzaSaWV-PF1mlKgBw62Zc-bN543j5DXDN4zAPUhAkjGMuAiAzbvxROyYlLwjENVPSUrEMCyQsifJ-RFjFcATBVF9ZycCAUFBy5X5Ne3AY2lARuHo_M9vZ6wc-ORtmhGH2ib1gV26eIM3fh4SMdXPEaKfUPH4-AMdjTecRxcjDNDNLbH4HykU3T9jmKKmOAbH93BjiER4DAEj2b_kjxrsYv21f25Jj_OP33fXGbbLxefN2fbzORQjZlpcsHLJuemboxVOULJlVRFaZu6LipRp26KppWocgWYV7ltLAO01hppmTBiTT4uvMNUH2zi6MeAnR6CO2A4ao9O_xvp3V7v_I1mwMpSJknX5N3CsH-Ud3m21fNbmgRAKfgNS9jT-2rBX082jjopY2zXYW_9FDUvgVVKgRQJ-vYR9MpPoU9aJBSTLJc5nwn5gkoqxhhs-_ADBnp2gl6coJMH9J0TdJGS3vzd80PK79EngFgAMYX6nQ1_av-H9ha9Y8CY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814154521</pqid></control><display><type>article</type><title>Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Papadopoulos, Alexis ; Kyriakou, Ioanna ; Incerti, Sébastien ; Santin, Giovanni ; Nieminen, Petteri ; Daglis, Ioannis A. ; Li, Weibo ; Emfietzoglou, Dimitris</creator><creatorcontrib>Papadopoulos, Alexis ; Kyriakou, Ioanna ; Incerti, Sébastien ; Santin, Giovanni ; Nieminen, Petteri ; Daglis, Ioannis A. ; Li, Weibo ; Emfietzoglou, Dimitris</creatorcontrib><description>Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor,
Q
, which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy (
y
). In the present work, the average
Q
of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA’s OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0–30 g/cm
2
) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions (
Z
≥
1
) in 1 μm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based
Q
-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based
Q
-values and up to 3% and 6% from NASA’s
Q
-model. In addition, they were found to be in good agreement with the
Q
-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-023-01023-6</identifier><identifier>PMID: 37062024</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Astronauts ; Biological and Medical Physics ; Biological effects ; Biophysics ; Carcinogens ; Cosmic Radiation ; Cosmic rays ; Deep space ; Earth magnetosphere ; Earth orbits ; Ecosystems ; Effects of Radiation/Radiation Protection ; Energy spectra ; Energy transfer ; Environmental Physics ; Extraterrestrial radiation ; Galactic cosmic rays ; Humans ; International Space Station ; Interplanetary space ; Ions ; Linear energy transfer (LET) ; Low earth orbits ; Mathematical models ; Monitoring/Environmental Analysis ; Original ; Original Article ; Physics ; Physics and Astronomy ; Q factors ; Radiation ; Radiation effects ; Radiation Exposure ; Radiation shielding ; Relative Biological Effectiveness ; Space Flight ; Space missions ; Water</subject><ispartof>Radiation and environmental biophysics, 2023-05, Vol.62 (2), p.221-234</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-cd5328d52cbdce75a08274768edbb693b7066df4a7570a595ede10aeeec4e13c3</citedby><cites>FETCH-LOGICAL-c509t-cd5328d52cbdce75a08274768edbb693b7066df4a7570a595ede10aeeec4e13c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00411-023-01023-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00411-023-01023-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37062024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04100832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadopoulos, Alexis</creatorcontrib><creatorcontrib>Kyriakou, Ioanna</creatorcontrib><creatorcontrib>Incerti, Sébastien</creatorcontrib><creatorcontrib>Santin, Giovanni</creatorcontrib><creatorcontrib>Nieminen, Petteri</creatorcontrib><creatorcontrib>Daglis, Ioannis A.</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><creatorcontrib>Emfietzoglou, Dimitris</creatorcontrib><title>Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><addtitle>Radiat Environ Biophys</addtitle><description>Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor,
Q
, which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy (
y
). In the present work, the average
Q
of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA’s OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0–30 g/cm
2
) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions (
Z
≥
1
) in 1 μm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based
Q
-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based
Q
-values and up to 3% and 6% from NASA’s
Q
-model. In addition, they were found to be in good agreement with the
Q
-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit.</description><subject>Aluminum</subject><subject>Astronauts</subject><subject>Biological and Medical Physics</subject><subject>Biological effects</subject><subject>Biophysics</subject><subject>Carcinogens</subject><subject>Cosmic Radiation</subject><subject>Cosmic rays</subject><subject>Deep space</subject><subject>Earth magnetosphere</subject><subject>Earth orbits</subject><subject>Ecosystems</subject><subject>Effects of Radiation/Radiation Protection</subject><subject>Energy spectra</subject><subject>Energy transfer</subject><subject>Environmental Physics</subject><subject>Extraterrestrial radiation</subject><subject>Galactic cosmic rays</subject><subject>Humans</subject><subject>International Space Station</subject><subject>Interplanetary space</subject><subject>Ions</subject><subject>Linear energy transfer (LET)</subject><subject>Low earth orbits</subject><subject>Mathematical models</subject><subject>Monitoring/Environmental Analysis</subject><subject>Original</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Q factors</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Radiation Exposure</subject><subject>Radiation shielding</subject><subject>Relative Biological Effectiveness</subject><subject>Space Flight</subject><subject>Space missions</subject><subject>Water</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Uk1v1DAQtRCILgt_gAOyxKUcAuOPxMkJVSvaIq2ExIfEzZo4zq6rbJzaSaWV-PF1mlKgBw62Zc-bN543j5DXDN4zAPUhAkjGMuAiAzbvxROyYlLwjENVPSUrEMCyQsifJ-RFjFcATBVF9ZycCAUFBy5X5Ne3AY2lARuHo_M9vZ6wc-ORtmhGH2ib1gV26eIM3fh4SMdXPEaKfUPH4-AMdjTecRxcjDNDNLbH4HykU3T9jmKKmOAbH93BjiER4DAEj2b_kjxrsYv21f25Jj_OP33fXGbbLxefN2fbzORQjZlpcsHLJuemboxVOULJlVRFaZu6LipRp26KppWocgWYV7ltLAO01hppmTBiTT4uvMNUH2zi6MeAnR6CO2A4ao9O_xvp3V7v_I1mwMpSJknX5N3CsH-Ud3m21fNbmgRAKfgNS9jT-2rBX082jjopY2zXYW_9FDUvgVVKgRQJ-vYR9MpPoU9aJBSTLJc5nwn5gkoqxhhs-_ADBnp2gl6coJMH9J0TdJGS3vzd80PK79EngFgAMYX6nQ1_av-H9ha9Y8CY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Papadopoulos, Alexis</creator><creator>Kyriakou, Ioanna</creator><creator>Incerti, Sébastien</creator><creator>Santin, Giovanni</creator><creator>Nieminen, Petteri</creator><creator>Daglis, Ioannis A.</creator><creator>Li, Weibo</creator><creator>Emfietzoglou, Dimitris</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20230501</creationdate><title>Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach</title><author>Papadopoulos, Alexis ; Kyriakou, Ioanna ; Incerti, Sébastien ; Santin, Giovanni ; Nieminen, Petteri ; Daglis, Ioannis A. ; Li, Weibo ; Emfietzoglou, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-cd5328d52cbdce75a08274768edbb693b7066df4a7570a595ede10aeeec4e13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Astronauts</topic><topic>Biological and Medical Physics</topic><topic>Biological effects</topic><topic>Biophysics</topic><topic>Carcinogens</topic><topic>Cosmic Radiation</topic><topic>Cosmic rays</topic><topic>Deep space</topic><topic>Earth magnetosphere</topic><topic>Earth orbits</topic><topic>Ecosystems</topic><topic>Effects of Radiation/Radiation Protection</topic><topic>Energy spectra</topic><topic>Energy transfer</topic><topic>Environmental Physics</topic><topic>Extraterrestrial radiation</topic><topic>Galactic cosmic rays</topic><topic>Humans</topic><topic>International Space Station</topic><topic>Interplanetary space</topic><topic>Ions</topic><topic>Linear energy transfer (LET)</topic><topic>Low earth orbits</topic><topic>Mathematical models</topic><topic>Monitoring/Environmental Analysis</topic><topic>Original</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Q factors</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Radiation Exposure</topic><topic>Radiation shielding</topic><topic>Relative Biological Effectiveness</topic><topic>Space Flight</topic><topic>Space missions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, Alexis</creatorcontrib><creatorcontrib>Kyriakou, Ioanna</creatorcontrib><creatorcontrib>Incerti, Sébastien</creatorcontrib><creatorcontrib>Santin, Giovanni</creatorcontrib><creatorcontrib>Nieminen, Petteri</creatorcontrib><creatorcontrib>Daglis, Ioannis A.</creatorcontrib><creatorcontrib>Li, Weibo</creatorcontrib><creatorcontrib>Emfietzoglou, Dimitris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadopoulos, Alexis</au><au>Kyriakou, Ioanna</au><au>Incerti, Sébastien</au><au>Santin, Giovanni</au><au>Nieminen, Petteri</au><au>Daglis, Ioannis A.</au><au>Li, Weibo</au><au>Emfietzoglou, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach</atitle><jtitle>Radiation and environmental biophysics</jtitle><stitle>Radiat Environ Biophys</stitle><addtitle>Radiat Environ Biophys</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor,
Q
, which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy (
y
). In the present work, the average
Q
of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA’s OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0–30 g/cm
2
) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions (
Z
≥
1
) in 1 μm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based
Q
-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based
Q
-values and up to 3% and 6% from NASA’s
Q
-model. In addition, they were found to be in good agreement with the
Q
-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37062024</pmid><doi>10.1007/s00411-023-01023-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-634X |
ispartof | Radiation and environmental biophysics, 2023-05, Vol.62 (2), p.221-234 |
issn | 0301-634X 1432-2099 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10188414 |
source | MEDLINE; SpringerLink Journals |
subjects | Aluminum Astronauts Biological and Medical Physics Biological effects Biophysics Carcinogens Cosmic Radiation Cosmic rays Deep space Earth magnetosphere Earth orbits Ecosystems Effects of Radiation/Radiation Protection Energy spectra Energy transfer Environmental Physics Extraterrestrial radiation Galactic cosmic rays Humans International Space Station Interplanetary space Ions Linear energy transfer (LET) Low earth orbits Mathematical models Monitoring/Environmental Analysis Original Original Article Physics Physics and Astronomy Q factors Radiation Radiation effects Radiation Exposure Radiation shielding Relative Biological Effectiveness Space Flight Space missions Water |
title | Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%20radiation%20quality%20factor%20for%20Galactic%20Cosmic%20Rays%20and%20typical%20space%20mission%20scenarios%20using%20a%20microdosimetric%20approach&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Papadopoulos,%20Alexis&rft.date=2023-05-01&rft.volume=62&rft.issue=2&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-023-01023-6&rft_dat=%3Cproquest_pubme%3E2801977043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814154521&rft_id=info:pmid/37062024&rfr_iscdi=true |