Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis

Objectives The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. Methods PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiologia medica 2023-05, Vol.128 (5), p.544-555
Hauptverfasser: Serafin, Marco, Baldini, Benedetta, Cabitza, Federico, Carrafiello, Gianpaolo, Baselli, Giuseppe, Del Fabbro, Massimo, Sforza, Chiarella, Caprioglio, Alberto, Tartaglia, Gianluca M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 5
container_start_page 544
container_title Radiologia medica
container_volume 128
creator Serafin, Marco
Baldini, Benedetta
Cabitza, Federico
Carrafiello, Gianpaolo
Baselli, Giuseppe
Del Fabbro, Massimo
Sforza, Chiarella
Caprioglio, Alberto
Tartaglia, Gianluca M.
description Objectives The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. Methods PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and automated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication. Results The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model revealed a mean value of 2.44 mm, with a high heterogeneity ( I 2  = 98.13%, τ 2  = 1.018, p -value 
doi_str_mv 10.1007/s11547-023-01629-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813001378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-3ead039d4d0d2e1b4f22661ebea884de8945699905db605d8a463c94b9a1f45d3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EoqXwBzggS1y4BMYfSWwuqCq0IFXiAmfLsSe7Lkm8tZNW-fd42VIKBy62pXnmsccvIS8ZvGUA7bvMWC3bCriogDVcV_wROWaKN1WjlXj84HxEnuV8BSCBgX5KjkQLWgjRHpPrU-eWZN1KY0_tMsfRzuip-Egd7rZ2iCPOKTg62MmPNv3ItFupR9zRAW2awrShdtjEFObtmN_TvOYZi6J0JLwJeEtLHy0OW9nJDmsO-Tl50tsh44u7_YR8P__07exzdfn14svZ6WXlZFvPlUDrQWgvPXiOrJM9503DsEOrlPSotKwbrTXUvmvKoqxshNOy05b1svbihHw4eHdLN6J3OM3JDmaXQpljNdEG83dlCluziTeGAVNMt20xvLkzpHi9YJ7NGLLDofwFxiUbrqCumeSaF_T1P-hVXFKZeE8xAcBEqwrFD5RLMeeE_f1rGJh9pOYQqSmRml-Rmr361cM57lt-Z1gAcQByKU0bTH_u_o_2J8_orl8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813001378</pqid></control><display><type>article</type><title>Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Serafin, Marco ; Baldini, Benedetta ; Cabitza, Federico ; Carrafiello, Gianpaolo ; Baselli, Giuseppe ; Del Fabbro, Massimo ; Sforza, Chiarella ; Caprioglio, Alberto ; Tartaglia, Gianluca M.</creator><creatorcontrib>Serafin, Marco ; Baldini, Benedetta ; Cabitza, Federico ; Carrafiello, Gianpaolo ; Baselli, Giuseppe ; Del Fabbro, Massimo ; Sforza, Chiarella ; Caprioglio, Alberto ; Tartaglia, Gianluca M.</creatorcontrib><description>Objectives The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. Methods PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and automated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication. Results The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model revealed a mean value of 2.44 mm, with a high heterogeneity ( I 2  = 98.13%, τ 2  = 1.018, p -value &lt; 0.001); risk of bias was high due to the presence of issues for several domains per study. Meta-regression indicated a significant relation between mean error and year of publication ( p value = 0.012). Conclusion Deep learning algorithms showed an excellent accuracy for automated 3D cephalometric landmarking. In the last two years promising algorithms have been developed and improvements in landmarks annotation accuracy have been done.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-023-01629-2</identifier><identifier>PMID: 37093337</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Accuracy ; Algorithms ; Anatomic Landmarks ; Annotations ; Automation ; Cephalometry - methods ; Computed Tomography ; Deep Learning ; Diagnostic Radiology ; Heterogeneity ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Interventional Radiology ; Machine learning ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Meta-analysis ; Neuroradiology ; Qualitative analysis ; Radiology ; Reproducibility of Results ; Systematic review ; Ultrasound</subject><ispartof>Radiologia medica, 2023-05, Vol.128 (5), p.544-555</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-3ead039d4d0d2e1b4f22661ebea884de8945699905db605d8a463c94b9a1f45d3</citedby><cites>FETCH-LOGICAL-c475t-3ead039d4d0d2e1b4f22661ebea884de8945699905db605d8a463c94b9a1f45d3</cites><orcidid>0000-0001-7062-5143 ; 0000-0001-7144-0984 ; 0000-0001-6532-6464 ; 0000-0003-4680-0989 ; 0000-0003-4365-4998 ; 0000-0003-1448-2808 ; 0000-0002-4065-3415 ; 0000-0003-2978-1704 ; 0000-0002-8264-7320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-023-01629-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-023-01629-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37093337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serafin, Marco</creatorcontrib><creatorcontrib>Baldini, Benedetta</creatorcontrib><creatorcontrib>Cabitza, Federico</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Baselli, Giuseppe</creatorcontrib><creatorcontrib>Del Fabbro, Massimo</creatorcontrib><creatorcontrib>Sforza, Chiarella</creatorcontrib><creatorcontrib>Caprioglio, Alberto</creatorcontrib><creatorcontrib>Tartaglia, Gianluca M.</creatorcontrib><title>Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Objectives The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. Methods PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and automated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication. Results The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model revealed a mean value of 2.44 mm, with a high heterogeneity ( I 2  = 98.13%, τ 2  = 1.018, p -value &lt; 0.001); risk of bias was high due to the presence of issues for several domains per study. Meta-regression indicated a significant relation between mean error and year of publication ( p value = 0.012). Conclusion Deep learning algorithms showed an excellent accuracy for automated 3D cephalometric landmarking. In the last two years promising algorithms have been developed and improvements in landmarks annotation accuracy have been done.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anatomic Landmarks</subject><subject>Annotations</subject><subject>Automation</subject><subject>Cephalometry - methods</subject><subject>Computed Tomography</subject><subject>Deep Learning</subject><subject>Diagnostic Radiology</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interventional Radiology</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Meta-analysis</subject><subject>Neuroradiology</subject><subject>Qualitative analysis</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Systematic review</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EoqXwBzggS1y4BMYfSWwuqCq0IFXiAmfLsSe7Lkm8tZNW-fd42VIKBy62pXnmsccvIS8ZvGUA7bvMWC3bCriogDVcV_wROWaKN1WjlXj84HxEnuV8BSCBgX5KjkQLWgjRHpPrU-eWZN1KY0_tMsfRzuip-Egd7rZ2iCPOKTg62MmPNv3ItFupR9zRAW2awrShdtjEFObtmN_TvOYZi6J0JLwJeEtLHy0OW9nJDmsO-Tl50tsh44u7_YR8P__07exzdfn14svZ6WXlZFvPlUDrQWgvPXiOrJM9503DsEOrlPSotKwbrTXUvmvKoqxshNOy05b1svbihHw4eHdLN6J3OM3JDmaXQpljNdEG83dlCluziTeGAVNMt20xvLkzpHi9YJ7NGLLDofwFxiUbrqCumeSaF_T1P-hVXFKZeE8xAcBEqwrFD5RLMeeE_f1rGJh9pOYQqSmRml-Rmr361cM57lt-Z1gAcQByKU0bTH_u_o_2J8_orl8</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Serafin, Marco</creator><creator>Baldini, Benedetta</creator><creator>Cabitza, Federico</creator><creator>Carrafiello, Gianpaolo</creator><creator>Baselli, Giuseppe</creator><creator>Del Fabbro, Massimo</creator><creator>Sforza, Chiarella</creator><creator>Caprioglio, Alberto</creator><creator>Tartaglia, Gianluca M.</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7062-5143</orcidid><orcidid>https://orcid.org/0000-0001-7144-0984</orcidid><orcidid>https://orcid.org/0000-0001-6532-6464</orcidid><orcidid>https://orcid.org/0000-0003-4680-0989</orcidid><orcidid>https://orcid.org/0000-0003-4365-4998</orcidid><orcidid>https://orcid.org/0000-0003-1448-2808</orcidid><orcidid>https://orcid.org/0000-0002-4065-3415</orcidid><orcidid>https://orcid.org/0000-0003-2978-1704</orcidid><orcidid>https://orcid.org/0000-0002-8264-7320</orcidid></search><sort><creationdate>20230501</creationdate><title>Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis</title><author>Serafin, Marco ; Baldini, Benedetta ; Cabitza, Federico ; Carrafiello, Gianpaolo ; Baselli, Giuseppe ; Del Fabbro, Massimo ; Sforza, Chiarella ; Caprioglio, Alberto ; Tartaglia, Gianluca M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-3ead039d4d0d2e1b4f22661ebea884de8945699905db605d8a463c94b9a1f45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anatomic Landmarks</topic><topic>Annotations</topic><topic>Automation</topic><topic>Cephalometry - methods</topic><topic>Computed Tomography</topic><topic>Deep Learning</topic><topic>Diagnostic Radiology</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interventional Radiology</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Meta-analysis</topic><topic>Neuroradiology</topic><topic>Qualitative analysis</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Systematic review</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serafin, Marco</creatorcontrib><creatorcontrib>Baldini, Benedetta</creatorcontrib><creatorcontrib>Cabitza, Federico</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Baselli, Giuseppe</creatorcontrib><creatorcontrib>Del Fabbro, Massimo</creatorcontrib><creatorcontrib>Sforza, Chiarella</creatorcontrib><creatorcontrib>Caprioglio, Alberto</creatorcontrib><creatorcontrib>Tartaglia, Gianluca M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serafin, Marco</au><au>Baldini, Benedetta</au><au>Cabitza, Federico</au><au>Carrafiello, Gianpaolo</au><au>Baselli, Giuseppe</au><au>Del Fabbro, Massimo</au><au>Sforza, Chiarella</au><au>Caprioglio, Alberto</au><au>Tartaglia, Gianluca M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>128</volume><issue>5</issue><spage>544</spage><epage>555</epage><pages>544-555</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Objectives The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images. Methods PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and automated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication. Results The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model revealed a mean value of 2.44 mm, with a high heterogeneity ( I 2  = 98.13%, τ 2  = 1.018, p -value &lt; 0.001); risk of bias was high due to the presence of issues for several domains per study. Meta-regression indicated a significant relation between mean error and year of publication ( p value = 0.012). Conclusion Deep learning algorithms showed an excellent accuracy for automated 3D cephalometric landmarking. In the last two years promising algorithms have been developed and improvements in landmarks annotation accuracy have been done.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>37093337</pmid><doi>10.1007/s11547-023-01629-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7062-5143</orcidid><orcidid>https://orcid.org/0000-0001-7144-0984</orcidid><orcidid>https://orcid.org/0000-0001-6532-6464</orcidid><orcidid>https://orcid.org/0000-0003-4680-0989</orcidid><orcidid>https://orcid.org/0000-0003-4365-4998</orcidid><orcidid>https://orcid.org/0000-0003-1448-2808</orcidid><orcidid>https://orcid.org/0000-0002-4065-3415</orcidid><orcidid>https://orcid.org/0000-0003-2978-1704</orcidid><orcidid>https://orcid.org/0000-0002-8264-7320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1826-6983
ispartof Radiologia medica, 2023-05, Vol.128 (5), p.544-555
issn 1826-6983
0033-8362
1826-6983
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181977
source MEDLINE; SpringerLink Journals
subjects Accuracy
Algorithms
Anatomic Landmarks
Annotations
Automation
Cephalometry - methods
Computed Tomography
Deep Learning
Diagnostic Radiology
Heterogeneity
Humans
Imaging
Imaging, Three-Dimensional - methods
Interventional Radiology
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Meta-analysis
Neuroradiology
Qualitative analysis
Radiology
Reproducibility of Results
Systematic review
Ultrasound
title Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20automated%203D%20cephalometric%20landmarks%20by%20deep%20learning%20algorithms:%20systematic%20review%20and%20meta-analysis&rft.jtitle=Radiologia%20medica&rft.au=Serafin,%20Marco&rft.date=2023-05-01&rft.volume=128&rft.issue=5&rft.spage=544&rft.epage=555&rft.pages=544-555&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-023-01629-2&rft_dat=%3Cproquest_pubme%3E2813001378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813001378&rft_id=info:pmid/37093337&rfr_iscdi=true