Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function

The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2023-05, Vol.15 (9), p.2222
Hauptverfasser: Menale, Ciro, Trinchese, Giovanna, Aiello, Immacolata, Scalia, Giulia, Dentice, Monica, Mollica, Maria Pina, Yoon, Nal Ae, Diano, Sabrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2222
container_title Nutrients
container_volume 15
creator Menale, Ciro
Trinchese, Giovanna
Aiello, Immacolata
Scalia, Giulia
Dentice, Monica
Mollica, Maria Pina
Yoon, Nal Ae
Diano, Sabrina
description The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.
doi_str_mv 10.3390/nu15092222
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749233470</galeid><sourcerecordid>A749233470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b91bc8e8dfb9bf692d2249a5e87ff89582be541b963a9f5b612d1567c2790af73</originalsourceid><addsrcrecordid>eNptkU1PGzEQhq2qCFDKhR9QrdRLVWmpP3bt9QmhkLSV-Li0Z8v2jonRxk7tXST-fR0RCKCODx55nnnHM4PQKcFnjEn8PUykxZIW-4COKRa05rxhH1_5R-gk53u8NYEFZ4foiImGUdaJY7S4mcbkIYz1JWwg9MWrrv0Y7SqGPnk9VEufs4-hWoSVDhZydZtHiGbQeayWU7BjCX5CB04PGU529wz9WS5-z3_WV7c_fs0vrmrbiGasjSTGdtD1zkjjuKQ9pY3ULXTCuU62HTXQNsRIzrR0reGE9qTlwlIhsXaCzdD5k-5mMmvobflt0oPaJL_W6VFF7dXbSPArdRcfFMGkI4zjovB1p5Di3wnyqNY-WxgGHSBOWdGOcSoFK3OboS_v0Ps4pVD6KxShnMgC76k7PYDywcVS2G5F1YVoJGWsEduyZ_-hyulh7W0M4Hx5f5Pw7SnBpphzAvfSJMFqu3i1X3yBP78eywv6vGb2D9UBpv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812619283</pqid></control><display><type>article</type><title>Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Menale, Ciro ; Trinchese, Giovanna ; Aiello, Immacolata ; Scalia, Giulia ; Dentice, Monica ; Mollica, Maria Pina ; Yoon, Nal Ae ; Diano, Sabrina</creator><creatorcontrib>Menale, Ciro ; Trinchese, Giovanna ; Aiello, Immacolata ; Scalia, Giulia ; Dentice, Monica ; Mollica, Maria Pina ; Yoon, Nal Ae ; Diano, Sabrina</creatorcontrib><description>The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu15092222</identifier><identifier>PMID: 37432387</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; Autophagy ; Availability ; Cell culture ; Cell growth ; Cytotoxicity ; Dynamin ; Electron transport ; Ethylenediaminetetraacetic acid ; Experiments ; Fatty acids ; Flow cytometry ; Fluorescence ; Fluorescence microscopy ; Gene expression ; Genes ; Glucose ; Glucose - pharmacology ; Homeostasis ; Lipids ; Metabolism ; Mineralization ; Mitochondria ; Mitochondrial Dynamics ; Mitochondrial Proteins ; Nutrient availability ; Nutrient dynamics ; Nutrients ; Osteoblasts ; Osteogenesis ; Oxidation ; Oxidative phosphorylation ; Oxygen consumption ; Palmitic acid ; Phosphatase ; Phosphorylation ; Physiology ; Proteins ; Respiration ; Saturated fatty acids</subject><ispartof>Nutrients, 2023-05, Vol.15 (9), p.2222</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b91bc8e8dfb9bf692d2249a5e87ff89582be541b963a9f5b612d1567c2790af73</citedby><cites>FETCH-LOGICAL-c474t-b91bc8e8dfb9bf692d2249a5e87ff89582be541b963a9f5b612d1567c2790af73</cites><orcidid>0009-0000-6724-2547 ; 0000-0002-9977-3761 ; 0000-0002-4096-6876 ; 0000-0001-5782-2089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181360/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181360/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37432387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menale, Ciro</creatorcontrib><creatorcontrib>Trinchese, Giovanna</creatorcontrib><creatorcontrib>Aiello, Immacolata</creatorcontrib><creatorcontrib>Scalia, Giulia</creatorcontrib><creatorcontrib>Dentice, Monica</creatorcontrib><creatorcontrib>Mollica, Maria Pina</creatorcontrib><creatorcontrib>Yoon, Nal Ae</creatorcontrib><creatorcontrib>Diano, Sabrina</creatorcontrib><title>Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.</description><subject>Amino acids</subject><subject>Autophagy</subject><subject>Availability</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cytotoxicity</subject><subject>Dynamin</subject><subject>Electron transport</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Homeostasis</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mineralization</subject><subject>Mitochondria</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins</subject><subject>Nutrient availability</subject><subject>Nutrient dynamics</subject><subject>Nutrients</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Oxidation</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen consumption</subject><subject>Palmitic acid</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Saturated fatty acids</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkU1PGzEQhq2qCFDKhR9QrdRLVWmpP3bt9QmhkLSV-Li0Z8v2jonRxk7tXST-fR0RCKCODx55nnnHM4PQKcFnjEn8PUykxZIW-4COKRa05rxhH1_5R-gk53u8NYEFZ4foiImGUdaJY7S4mcbkIYz1JWwg9MWrrv0Y7SqGPnk9VEufs4-hWoSVDhZydZtHiGbQeayWU7BjCX5CB04PGU529wz9WS5-z3_WV7c_fs0vrmrbiGasjSTGdtD1zkjjuKQ9pY3ULXTCuU62HTXQNsRIzrR0reGE9qTlwlIhsXaCzdD5k-5mMmvobflt0oPaJL_W6VFF7dXbSPArdRcfFMGkI4zjovB1p5Di3wnyqNY-WxgGHSBOWdGOcSoFK3OboS_v0Ps4pVD6KxShnMgC76k7PYDywcVS2G5F1YVoJGWsEduyZ_-hyulh7W0M4Hx5f5Pw7SnBpphzAvfSJMFqu3i1X3yBP78eywv6vGb2D9UBpv4</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Menale, Ciro</creator><creator>Trinchese, Giovanna</creator><creator>Aiello, Immacolata</creator><creator>Scalia, Giulia</creator><creator>Dentice, Monica</creator><creator>Mollica, Maria Pina</creator><creator>Yoon, Nal Ae</creator><creator>Diano, Sabrina</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-6724-2547</orcidid><orcidid>https://orcid.org/0000-0002-9977-3761</orcidid><orcidid>https://orcid.org/0000-0002-4096-6876</orcidid><orcidid>https://orcid.org/0000-0001-5782-2089</orcidid></search><sort><creationdate>20230508</creationdate><title>Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function</title><author>Menale, Ciro ; Trinchese, Giovanna ; Aiello, Immacolata ; Scalia, Giulia ; Dentice, Monica ; Mollica, Maria Pina ; Yoon, Nal Ae ; Diano, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b91bc8e8dfb9bf692d2249a5e87ff89582be541b963a9f5b612d1567c2790af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Autophagy</topic><topic>Availability</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cytotoxicity</topic><topic>Dynamin</topic><topic>Electron transport</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Homeostasis</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mineralization</topic><topic>Mitochondria</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins</topic><topic>Nutrient availability</topic><topic>Nutrient dynamics</topic><topic>Nutrients</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Oxidation</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen consumption</topic><topic>Palmitic acid</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Saturated fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menale, Ciro</creatorcontrib><creatorcontrib>Trinchese, Giovanna</creatorcontrib><creatorcontrib>Aiello, Immacolata</creatorcontrib><creatorcontrib>Scalia, Giulia</creatorcontrib><creatorcontrib>Dentice, Monica</creatorcontrib><creatorcontrib>Mollica, Maria Pina</creatorcontrib><creatorcontrib>Yoon, Nal Ae</creatorcontrib><creatorcontrib>Diano, Sabrina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menale, Ciro</au><au>Trinchese, Giovanna</au><au>Aiello, Immacolata</au><au>Scalia, Giulia</au><au>Dentice, Monica</au><au>Mollica, Maria Pina</au><au>Yoon, Nal Ae</au><au>Diano, Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>2222</spage><pages>2222-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. The addition of non-lipotoxic levels of 25 μM PA to G increased mineralization in OBs. G+25 μM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 μM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37432387</pmid><doi>10.3390/nu15092222</doi><orcidid>https://orcid.org/0009-0000-6724-2547</orcidid><orcidid>https://orcid.org/0000-0002-9977-3761</orcidid><orcidid>https://orcid.org/0000-0002-4096-6876</orcidid><orcidid>https://orcid.org/0000-0001-5782-2089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2023-05, Vol.15 (9), p.2222
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181360
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Amino acids
Autophagy
Availability
Cell culture
Cell growth
Cytotoxicity
Dynamin
Electron transport
Ethylenediaminetetraacetic acid
Experiments
Fatty acids
Flow cytometry
Fluorescence
Fluorescence microscopy
Gene expression
Genes
Glucose
Glucose - pharmacology
Homeostasis
Lipids
Metabolism
Mineralization
Mitochondria
Mitochondrial Dynamics
Mitochondrial Proteins
Nutrient availability
Nutrient dynamics
Nutrients
Osteoblasts
Osteogenesis
Oxidation
Oxidative phosphorylation
Oxygen consumption
Palmitic acid
Phosphatase
Phosphorylation
Physiology
Proteins
Respiration
Saturated fatty acids
title Nutrient-Dependent Mitochondrial Fission Enhances Osteoblast Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrient-Dependent%20Mitochondrial%20Fission%20Enhances%20Osteoblast%20Function&rft.jtitle=Nutrients&rft.au=Menale,%20Ciro&rft.date=2023-05-08&rft.volume=15&rft.issue=9&rft.spage=2222&rft.pages=2222-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu15092222&rft_dat=%3Cgale_pubme%3EA749233470%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812619283&rft_id=info:pmid/37432387&rft_galeid=A749233470&rfr_iscdi=true