Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model
Due to different tensile and compressive properties of rock material, the corresponding tensile and compressive damage evolution show major differences. To investigate the tensile and compressive damage evolution in deep cut blasting with different in-situ stresses, an improved Holmquist-Johnson-Coo...
Gespeichert in:
Veröffentlicht in: | Materials 2023-04, Vol.16 (9), p.3415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3415 |
container_title | Materials |
container_volume | 16 |
creator | Liu, Kai Li, Qiyue Wu, Chengqing Li, Xibing Zhu, Wei |
description | Due to different tensile and compressive properties of rock material, the corresponding tensile and compressive damage evolution show major differences. To investigate the tensile and compressive damage evolution in deep cut blasting with different in-situ stresses, an improved Holmquist-Johnson-Cook (HJC) material model considers the tensile and compressive damage separately is developed. The improved HJC model is implemented into LS-DYNA via a user-defined subroutine in this study. Then, a numerical model with different in-situ stresses loading schemes is modelled. Numerical simulation results show that in-situ stress can inhibit the development of tensile damage evolution, while promote the development of compressive damage evolution. The overall damage zone presents a decreasing trend with the increase of in-situ stress, because the tensile damage is more sensitive than the compressive damage for rock material. In addition, the maximum principal stress can determine the development of the direction of damage. Further, for a field test of blind cut raise in deep, the actual in-situ stress values are loaded on the numerical model. Then, in order to overcome the difficulties caused by in-situ stress, the cut blasting design is optimized by reducing hole spacing. Subsequently, the optimized cut parameters are applied in the blind cut raise. However, the one-step raise excavation method is adjusted to two steps to ensure success due to a serious borehole deviation between drilling and design drawing. After these steps, the formation of the blind cut raise with 8.7 m depth is met the requirements of design. |
doi_str_mv | 10.3390/ma16093415 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749097960</galeid><sourcerecordid>A749097960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-85067ef2fa704ba30bf61f85d17c20d236f4b89d762bf06626bbae5e2e08c1bb3</originalsourceid><addsrcrecordid>eNpdkt9uFCEUxidGY5vaGx_AkHhjTKbyZ4YZrsx2U9s11SauvSYMc9hSGdgOTGNfwycu49ZahQsOnN_54JCvKF4TfMSYwB8GRTgWrCL1s2KfCMFLIqrq-ZN4rziM8RrnwRhpqXhZ7LGGNJyKZr_4tfLGTeA1oGDQypdrmya0TiPEiIJHyymhY6disn4zExceynWCLfqmbAR08lOrW5VsJi_jjHydBhitVg4tvHJ30UZ0rCL0s5ZCX0Jvjc27s-CGm8nGVH4OVz4GXy5D-DHnwb0qXhjlIhw-rAfF5aeT78uz8vzidLVcnJe6wnUq2xrzBgw1qsFVpxjuDCemrXvSaIp7yripulb0udHOYM4p7zoFNVDArSZdxw6Kjzvd7dQN0GvwaVRObkc7qPFOBmXlvxlvr-Qm3EqCSYurtsoK7x4UxnAzQUxysFGDc8pDmKKkLWF1LTCvM_r2P_Q6TGP-ot8UbVjFKM_U0Y7aKAfSehPyxTrPHgargwdj8_miqQQWjeA4F7zfFegxxDiCeXw-wXL2h_zrjwy_edrwI_rHDewepMe2KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812734326</pqid></control><display><type>article</type><title>Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Kai ; Li, Qiyue ; Wu, Chengqing ; Li, Xibing ; Zhu, Wei</creator><creatorcontrib>Liu, Kai ; Li, Qiyue ; Wu, Chengqing ; Li, Xibing ; Zhu, Wei</creatorcontrib><description>Due to different tensile and compressive properties of rock material, the corresponding tensile and compressive damage evolution show major differences. To investigate the tensile and compressive damage evolution in deep cut blasting with different in-situ stresses, an improved Holmquist-Johnson-Cook (HJC) material model considers the tensile and compressive damage separately is developed. The improved HJC model is implemented into LS-DYNA via a user-defined subroutine in this study. Then, a numerical model with different in-situ stresses loading schemes is modelled. Numerical simulation results show that in-situ stress can inhibit the development of tensile damage evolution, while promote the development of compressive damage evolution. The overall damage zone presents a decreasing trend with the increase of in-situ stress, because the tensile damage is more sensitive than the compressive damage for rock material. In addition, the maximum principal stress can determine the development of the direction of damage. Further, for a field test of blind cut raise in deep, the actual in-situ stress values are loaded on the numerical model. Then, in order to overcome the difficulties caused by in-situ stress, the cut blasting design is optimized by reducing hole spacing. Subsequently, the optimized cut parameters are applied in the blind cut raise. However, the one-step raise excavation method is adjusted to two steps to ensure success due to a serious borehole deviation between drilling and design drawing. After these steps, the formation of the blind cut raise with 8.7 m depth is met the requirements of design.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16093415</identifier><identifier>PMID: 37176297</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Behavior ; Blasting ; Boreholes ; Compressive properties ; Damage ; Design optimization ; Engineering ; Evolution ; Excavation ; Field tests ; Mathematical models ; Mechanics ; Mines ; Numerical analysis ; Numerical models ; Production capacity ; Rock properties ; Simulation methods ; Stresses</subject><ispartof>Materials, 2023-04, Vol.16 (9), p.3415</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-85067ef2fa704ba30bf61f85d17c20d236f4b89d762bf06626bbae5e2e08c1bb3</cites><orcidid>0000-0003-3779-7618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180484/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180484/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37176297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Qiyue</creatorcontrib><creatorcontrib>Wu, Chengqing</creatorcontrib><creatorcontrib>Li, Xibing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><title>Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Due to different tensile and compressive properties of rock material, the corresponding tensile and compressive damage evolution show major differences. To investigate the tensile and compressive damage evolution in deep cut blasting with different in-situ stresses, an improved Holmquist-Johnson-Cook (HJC) material model considers the tensile and compressive damage separately is developed. The improved HJC model is implemented into LS-DYNA via a user-defined subroutine in this study. Then, a numerical model with different in-situ stresses loading schemes is modelled. Numerical simulation results show that in-situ stress can inhibit the development of tensile damage evolution, while promote the development of compressive damage evolution. The overall damage zone presents a decreasing trend with the increase of in-situ stress, because the tensile damage is more sensitive than the compressive damage for rock material. In addition, the maximum principal stress can determine the development of the direction of damage. Further, for a field test of blind cut raise in deep, the actual in-situ stress values are loaded on the numerical model. Then, in order to overcome the difficulties caused by in-situ stress, the cut blasting design is optimized by reducing hole spacing. Subsequently, the optimized cut parameters are applied in the blind cut raise. However, the one-step raise excavation method is adjusted to two steps to ensure success due to a serious borehole deviation between drilling and design drawing. After these steps, the formation of the blind cut raise with 8.7 m depth is met the requirements of design.</description><subject>Analysis</subject><subject>Behavior</subject><subject>Blasting</subject><subject>Boreholes</subject><subject>Compressive properties</subject><subject>Damage</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Excavation</subject><subject>Field tests</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mines</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Production capacity</subject><subject>Rock properties</subject><subject>Simulation methods</subject><subject>Stresses</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkt9uFCEUxidGY5vaGx_AkHhjTKbyZ4YZrsx2U9s11SauvSYMc9hSGdgOTGNfwycu49ZahQsOnN_54JCvKF4TfMSYwB8GRTgWrCL1s2KfCMFLIqrq-ZN4rziM8RrnwRhpqXhZ7LGGNJyKZr_4tfLGTeA1oGDQypdrmya0TiPEiIJHyymhY6disn4zExceynWCLfqmbAR08lOrW5VsJi_jjHydBhitVg4tvHJ30UZ0rCL0s5ZCX0Jvjc27s-CGm8nGVH4OVz4GXy5D-DHnwb0qXhjlIhw-rAfF5aeT78uz8vzidLVcnJe6wnUq2xrzBgw1qsFVpxjuDCemrXvSaIp7yripulb0udHOYM4p7zoFNVDArSZdxw6Kjzvd7dQN0GvwaVRObkc7qPFOBmXlvxlvr-Qm3EqCSYurtsoK7x4UxnAzQUxysFGDc8pDmKKkLWF1LTCvM_r2P_Q6TGP-ot8UbVjFKM_U0Y7aKAfSehPyxTrPHgargwdj8_miqQQWjeA4F7zfFegxxDiCeXw-wXL2h_zrjwy_edrwI_rHDewepMe2KQ</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Liu, Kai</creator><creator>Li, Qiyue</creator><creator>Wu, Chengqing</creator><creator>Li, Xibing</creator><creator>Zhu, Wei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3779-7618</orcidid></search><sort><creationdate>20230427</creationdate><title>Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model</title><author>Liu, Kai ; Li, Qiyue ; Wu, Chengqing ; Li, Xibing ; Zhu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-85067ef2fa704ba30bf61f85d17c20d236f4b89d762bf06626bbae5e2e08c1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Behavior</topic><topic>Blasting</topic><topic>Boreholes</topic><topic>Compressive properties</topic><topic>Damage</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Excavation</topic><topic>Field tests</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mines</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Production capacity</topic><topic>Rock properties</topic><topic>Simulation methods</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Qiyue</creatorcontrib><creatorcontrib>Wu, Chengqing</creatorcontrib><creatorcontrib>Li, Xibing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Li, Qiyue</au><au>Wu, Chengqing</au><au>Li, Xibing</au><au>Zhu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>3415</spage><pages>3415-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Due to different tensile and compressive properties of rock material, the corresponding tensile and compressive damage evolution show major differences. To investigate the tensile and compressive damage evolution in deep cut blasting with different in-situ stresses, an improved Holmquist-Johnson-Cook (HJC) material model considers the tensile and compressive damage separately is developed. The improved HJC model is implemented into LS-DYNA via a user-defined subroutine in this study. Then, a numerical model with different in-situ stresses loading schemes is modelled. Numerical simulation results show that in-situ stress can inhibit the development of tensile damage evolution, while promote the development of compressive damage evolution. The overall damage zone presents a decreasing trend with the increase of in-situ stress, because the tensile damage is more sensitive than the compressive damage for rock material. In addition, the maximum principal stress can determine the development of the direction of damage. Further, for a field test of blind cut raise in deep, the actual in-situ stress values are loaded on the numerical model. Then, in order to overcome the difficulties caused by in-situ stress, the cut blasting design is optimized by reducing hole spacing. Subsequently, the optimized cut parameters are applied in the blind cut raise. However, the one-step raise excavation method is adjusted to two steps to ensure success due to a serious borehole deviation between drilling and design drawing. After these steps, the formation of the blind cut raise with 8.7 m depth is met the requirements of design.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37176297</pmid><doi>10.3390/ma16093415</doi><orcidid>https://orcid.org/0000-0003-3779-7618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-04, Vol.16 (9), p.3415 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180484 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Behavior Blasting Boreholes Compressive properties Damage Design optimization Engineering Evolution Excavation Field tests Mathematical models Mechanics Mines Numerical analysis Numerical models Production capacity Rock properties Simulation methods Stresses |
title | Influence of In-Situ Stress on Cut Blasting of One-Step Raise Excavation Using Numerical Analysis Based on a Modified Holmquist-Johnson-Cook Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20In-Situ%20Stress%20on%20Cut%20Blasting%20of%20One-Step%20Raise%20Excavation%20Using%20Numerical%20Analysis%20Based%20on%20a%20Modified%20Holmquist-Johnson-Cook%20Model&rft.jtitle=Materials&rft.au=Liu,%20Kai&rft.date=2023-04-27&rft.volume=16&rft.issue=9&rft.spage=3415&rft.pages=3415-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16093415&rft_dat=%3Cgale_pubme%3EA749097960%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812734326&rft_id=info:pmid/37176297&rft_galeid=A749097960&rfr_iscdi=true |