Structural and Functional Properties of Kappa Tropomyosin

In the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-05, Vol.24 (9), p.8340
Hauptverfasser: Kopylova, Galina V, Kochurova, Anastasia M, Yampolskaya, Daria S, Nefedova, Victoria V, Tsaturyan, Andrey K, Koubassova, Natalia A, Kleymenov, Sergey Y, Levitsky, Dmitrii I, Bershitsky, Sergey Y, Matyushenko, Alexander M, Shchepkin, Daniil V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 8340
container_title International journal of molecular sciences
container_volume 24
creator Kopylova, Galina V
Kochurova, Anastasia M
Yampolskaya, Daria S
Nefedova, Victoria V
Tsaturyan, Andrey K
Koubassova, Natalia A
Kleymenov, Sergey Y
Levitsky, Dmitrii I
Bershitsky, Sergey Y
Matyushenko, Alexander M
Shchepkin, Daniil V
description In the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.
doi_str_mv 10.3390/ijms24098340
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752423632</galeid><sourcerecordid>A752423632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-62eec618d842be2d9310da456e0135dd9e2ceb1f8013b3c3ca84b3fbea5866e73</originalsourceid><addsrcrecordid>eNptkU1P3DAQhi1UVCjtjXMVqRcOXfBXHPuEEGIpAgkktmfLcSbUq8QOdoK0_75ePlYLQj7YM37m9XhehA4JPmZM4RO37BPlWEnG8Q7aJ5zSGcai-rJ13kPfUlpiTBkt1Ve0xypSCcyrfaTuxzjZcYqmK4xvivnk7eiCz-FdDAPE0UEqQltcm2EwxSLnQr8KyfnvaLc1XYIfr_sB-ju_WJz_md3cXl6dn93MLJd4nAkKYAWRjeS0BtooRnBjeCkAE1Y2jQJqoSatzGHNLLNG8pq1NZhSCgEVO0CnL7rDVPfQWPBjblYP0fUmrnQwTr-_8e6ffghPmmBSKYFVVjh6VYjhcYI06t4lC11nPIQpaSpzJ6Us1Rr99QFdhinmaTxTVBAiyBb1YDrQzrchP2zXovqsKimnTDCaqeNPqLwa6J0NHlqX8-8Kfr8U2BhSitBuPkmwXnutt73O-M_twWzgN3PZf7YZo8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812611619</pqid></control><display><type>article</type><title>Structural and Functional Properties of Kappa Tropomyosin</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kopylova, Galina V ; Kochurova, Anastasia M ; Yampolskaya, Daria S ; Nefedova, Victoria V ; Tsaturyan, Andrey K ; Koubassova, Natalia A ; Kleymenov, Sergey Y ; Levitsky, Dmitrii I ; Bershitsky, Sergey Y ; Matyushenko, Alexander M ; Shchepkin, Daniil V</creator><creatorcontrib>Kopylova, Galina V ; Kochurova, Anastasia M ; Yampolskaya, Daria S ; Nefedova, Victoria V ; Tsaturyan, Andrey K ; Koubassova, Natalia A ; Kleymenov, Sergey Y ; Levitsky, Dmitrii I ; Bershitsky, Sergey Y ; Matyushenko, Alexander M ; Shchepkin, Daniil V</creatorcontrib><description>In the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24098340</identifier><identifier>PMID: 37176047</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actin ; Actin Cytoskeleton - chemistry ; Actins - chemistry ; Affinity ; Alternative splicing ; Animals ; Calcium ; Calcium - analysis ; Cardiomyopathy ; Circular dichroism ; Comparative analysis ; Dichroism ; Differential scanning calorimetry ; Filaments ; Isoforms ; Muscle proteins ; Myocardium ; Myosin ; Myosins - analysis ; Rats ; Sensitivity ; Splicing ; Structure-function relationships ; Swine ; Thermal stability ; Transgenic animals ; Tropomyosin ; Tropomyosin - chemistry ; Tropomyosin - genetics ; Troponin ; Ventricle</subject><ispartof>International journal of molecular sciences, 2023-05, Vol.24 (9), p.8340</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-62eec618d842be2d9310da456e0135dd9e2ceb1f8013b3c3ca84b3fbea5866e73</citedby><cites>FETCH-LOGICAL-c480t-62eec618d842be2d9310da456e0135dd9e2ceb1f8013b3c3ca84b3fbea5866e73</cites><orcidid>0000-0003-4265-1525 ; 0000-0001-5342-1739 ; 0000-0003-2976-2108 ; 0000-0002-5583-5342 ; 0000-0002-7755-9895 ; 0000-0001-5085-0327 ; 0000-0002-0238-4920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179609/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179609/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37176047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopylova, Galina V</creatorcontrib><creatorcontrib>Kochurova, Anastasia M</creatorcontrib><creatorcontrib>Yampolskaya, Daria S</creatorcontrib><creatorcontrib>Nefedova, Victoria V</creatorcontrib><creatorcontrib>Tsaturyan, Andrey K</creatorcontrib><creatorcontrib>Koubassova, Natalia A</creatorcontrib><creatorcontrib>Kleymenov, Sergey Y</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I</creatorcontrib><creatorcontrib>Bershitsky, Sergey Y</creatorcontrib><creatorcontrib>Matyushenko, Alexander M</creatorcontrib><creatorcontrib>Shchepkin, Daniil V</creatorcontrib><title>Structural and Functional Properties of Kappa Tropomyosin</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.</description><subject>Actin</subject><subject>Actin Cytoskeleton - chemistry</subject><subject>Actins - chemistry</subject><subject>Affinity</subject><subject>Alternative splicing</subject><subject>Animals</subject><subject>Calcium</subject><subject>Calcium - analysis</subject><subject>Cardiomyopathy</subject><subject>Circular dichroism</subject><subject>Comparative analysis</subject><subject>Dichroism</subject><subject>Differential scanning calorimetry</subject><subject>Filaments</subject><subject>Isoforms</subject><subject>Muscle proteins</subject><subject>Myocardium</subject><subject>Myosin</subject><subject>Myosins - analysis</subject><subject>Rats</subject><subject>Sensitivity</subject><subject>Splicing</subject><subject>Structure-function relationships</subject><subject>Swine</subject><subject>Thermal stability</subject><subject>Transgenic animals</subject><subject>Tropomyosin</subject><subject>Tropomyosin - chemistry</subject><subject>Tropomyosin - genetics</subject><subject>Troponin</subject><subject>Ventricle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkU1P3DAQhi1UVCjtjXMVqRcOXfBXHPuEEGIpAgkktmfLcSbUq8QOdoK0_75ePlYLQj7YM37m9XhehA4JPmZM4RO37BPlWEnG8Q7aJ5zSGcai-rJ13kPfUlpiTBkt1Ve0xypSCcyrfaTuxzjZcYqmK4xvivnk7eiCz-FdDAPE0UEqQltcm2EwxSLnQr8KyfnvaLc1XYIfr_sB-ju_WJz_md3cXl6dn93MLJd4nAkKYAWRjeS0BtooRnBjeCkAE1Y2jQJqoSatzGHNLLNG8pq1NZhSCgEVO0CnL7rDVPfQWPBjblYP0fUmrnQwTr-_8e6ffghPmmBSKYFVVjh6VYjhcYI06t4lC11nPIQpaSpzJ6Us1Rr99QFdhinmaTxTVBAiyBb1YDrQzrchP2zXovqsKimnTDCaqeNPqLwa6J0NHlqX8-8Kfr8U2BhSitBuPkmwXnutt73O-M_twWzgN3PZf7YZo8g</recordid><startdate>20230506</startdate><enddate>20230506</enddate><creator>Kopylova, Galina V</creator><creator>Kochurova, Anastasia M</creator><creator>Yampolskaya, Daria S</creator><creator>Nefedova, Victoria V</creator><creator>Tsaturyan, Andrey K</creator><creator>Koubassova, Natalia A</creator><creator>Kleymenov, Sergey Y</creator><creator>Levitsky, Dmitrii I</creator><creator>Bershitsky, Sergey Y</creator><creator>Matyushenko, Alexander M</creator><creator>Shchepkin, Daniil V</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4265-1525</orcidid><orcidid>https://orcid.org/0000-0001-5342-1739</orcidid><orcidid>https://orcid.org/0000-0003-2976-2108</orcidid><orcidid>https://orcid.org/0000-0002-5583-5342</orcidid><orcidid>https://orcid.org/0000-0002-7755-9895</orcidid><orcidid>https://orcid.org/0000-0001-5085-0327</orcidid><orcidid>https://orcid.org/0000-0002-0238-4920</orcidid></search><sort><creationdate>20230506</creationdate><title>Structural and Functional Properties of Kappa Tropomyosin</title><author>Kopylova, Galina V ; Kochurova, Anastasia M ; Yampolskaya, Daria S ; Nefedova, Victoria V ; Tsaturyan, Andrey K ; Koubassova, Natalia A ; Kleymenov, Sergey Y ; Levitsky, Dmitrii I ; Bershitsky, Sergey Y ; Matyushenko, Alexander M ; Shchepkin, Daniil V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-62eec618d842be2d9310da456e0135dd9e2ceb1f8013b3c3ca84b3fbea5866e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - chemistry</topic><topic>Actins - chemistry</topic><topic>Affinity</topic><topic>Alternative splicing</topic><topic>Animals</topic><topic>Calcium</topic><topic>Calcium - analysis</topic><topic>Cardiomyopathy</topic><topic>Circular dichroism</topic><topic>Comparative analysis</topic><topic>Dichroism</topic><topic>Differential scanning calorimetry</topic><topic>Filaments</topic><topic>Isoforms</topic><topic>Muscle proteins</topic><topic>Myocardium</topic><topic>Myosin</topic><topic>Myosins - analysis</topic><topic>Rats</topic><topic>Sensitivity</topic><topic>Splicing</topic><topic>Structure-function relationships</topic><topic>Swine</topic><topic>Thermal stability</topic><topic>Transgenic animals</topic><topic>Tropomyosin</topic><topic>Tropomyosin - chemistry</topic><topic>Tropomyosin - genetics</topic><topic>Troponin</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopylova, Galina V</creatorcontrib><creatorcontrib>Kochurova, Anastasia M</creatorcontrib><creatorcontrib>Yampolskaya, Daria S</creatorcontrib><creatorcontrib>Nefedova, Victoria V</creatorcontrib><creatorcontrib>Tsaturyan, Andrey K</creatorcontrib><creatorcontrib>Koubassova, Natalia A</creatorcontrib><creatorcontrib>Kleymenov, Sergey Y</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I</creatorcontrib><creatorcontrib>Bershitsky, Sergey Y</creatorcontrib><creatorcontrib>Matyushenko, Alexander M</creatorcontrib><creatorcontrib>Shchepkin, Daniil V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopylova, Galina V</au><au>Kochurova, Anastasia M</au><au>Yampolskaya, Daria S</au><au>Nefedova, Victoria V</au><au>Tsaturyan, Andrey K</au><au>Koubassova, Natalia A</au><au>Kleymenov, Sergey Y</au><au>Levitsky, Dmitrii I</au><au>Bershitsky, Sergey Y</au><au>Matyushenko, Alexander M</au><au>Shchepkin, Daniil V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Functional Properties of Kappa Tropomyosin</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-05-06</date><risdate>2023</risdate><volume>24</volume><issue>9</issue><spage>8340</spage><pages>8340-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37176047</pmid><doi>10.3390/ijms24098340</doi><orcidid>https://orcid.org/0000-0003-4265-1525</orcidid><orcidid>https://orcid.org/0000-0001-5342-1739</orcidid><orcidid>https://orcid.org/0000-0003-2976-2108</orcidid><orcidid>https://orcid.org/0000-0002-5583-5342</orcidid><orcidid>https://orcid.org/0000-0002-7755-9895</orcidid><orcidid>https://orcid.org/0000-0001-5085-0327</orcidid><orcidid>https://orcid.org/0000-0002-0238-4920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-05, Vol.24 (9), p.8340
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179609
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Actin
Actin Cytoskeleton - chemistry
Actins - chemistry
Affinity
Alternative splicing
Animals
Calcium
Calcium - analysis
Cardiomyopathy
Circular dichroism
Comparative analysis
Dichroism
Differential scanning calorimetry
Filaments
Isoforms
Muscle proteins
Myocardium
Myosin
Myosins - analysis
Rats
Sensitivity
Splicing
Structure-function relationships
Swine
Thermal stability
Transgenic animals
Tropomyosin
Tropomyosin - chemistry
Tropomyosin - genetics
Troponin
Ventricle
title Structural and Functional Properties of Kappa Tropomyosin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Functional%20Properties%20of%20Kappa%20Tropomyosin&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kopylova,%20Galina%20V&rft.date=2023-05-06&rft.volume=24&rft.issue=9&rft.spage=8340&rft.pages=8340-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24098340&rft_dat=%3Cgale_pubme%3EA752423632%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812611619&rft_id=info:pmid/37176047&rft_galeid=A752423632&rfr_iscdi=true