Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes
In this work, we synthesized 1D hollow square rod-shaped MnO , and then obtained Na lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO in NaCl molten salt provides numero...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-04, Vol.24 (9), p.8035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 8035 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Qiu, Hengrui Zhang, Rui Zhang, Youxiang |
description | In this work, we synthesized 1D hollow square rod-shaped MnO
, and then obtained Na
lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO
in NaCl molten salt provides numerous anchor points for Li, Co, and Ni ions to directly prepare Li
Ni
Co
Mn
O
on the original morphology. Meanwhile, Na
is also introduced for lattice doping and induces the formation of oxygen vacancy. Therefrom, the modulated sample not only inherits the 1D rod-like morphology but also achieves Na
lattice doping and oxygen vacancy endowment, which facilitates Li
diffusion and improves the structural stability of the material. To this end, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and other characterization are used for analysis. In addition, density functional theory is used to further analyze the influence of oxygen vacancy generation on local transition metal ions, and theoretically explain the mechanism of the electrochemical performance of the samples. Therefore, the modulated sample has a high discharge capacity of 282 mAh g
and a high capacity retention of 90.02% after 150 cycles. At the same time, the voltage decay per cycle is only 0.0028 V, which is much lower than that of the material (0.0038 V per cycle) prepared without this strategy. In summary, a simple synthesis strategy is proposed, which can realize the morphology control of Li
Ni
Co
Mn
O
, doping of Na
lattice, and inducing the formation of oxygen vacancy, providing a feasible idea for related exploration. |
doi_str_mv | 10.3390/ijms24098035 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752423953</galeid><sourcerecordid>A752423953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-83a65d5bceddde277cce46ad1681b036e00209809fe5836ac644ba2c40cf90473</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxVcIREvhxhlZ4ki3-GPX3j2hKC20UkolBL1ak_HsxlFih12nav57HKVUqebg0fg3T_P0iuKj4BdKtfyrX65HWfG24ap-VZyKSsqSc21eH_UnxbtxXHIulazbt8WJMsLURunTIv0E9oXNICWPxC7jxoee3QS3RRrZ3eOup8DuASGgz4MU2QQXnh6IXft-waawAfRpxyA4duuT7yERu4-rBH1WI4Qdix2b-fKXxz2eFtHR-L5408FqpA9P71nx5_vV7-l1Obv7cTOdzEqsRJvKRoGuXT1Hcs6RNAaRKg1O6EbMudKUDe19tx3VjdKAuqrmILHi2LW8Muqs-HbQ3Wzna3JIIQ2wspvBr2HY2QjevvwJfmH7-GAFF6blXGSFz08KQ_y7pTHZZdwOIR9tZSNkbYRudaYuDlQPK7I-dDGrYS5Ha48xUOfzfGJqWUnV1iovnB8WcIjjOFD3fJPgdp-qPU4145-OfTzD_2NU_wB6BJ1m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812571696</pqid></control><display><type>article</type><title>Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Qiu, Hengrui ; Zhang, Rui ; Zhang, Youxiang</creator><creatorcontrib>Qiu, Hengrui ; Zhang, Rui ; Zhang, Youxiang</creatorcontrib><description>In this work, we synthesized 1D hollow square rod-shaped MnO
, and then obtained Na
lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO
in NaCl molten salt provides numerous anchor points for Li, Co, and Ni ions to directly prepare Li
Ni
Co
Mn
O
on the original morphology. Meanwhile, Na
is also introduced for lattice doping and induces the formation of oxygen vacancy. Therefrom, the modulated sample not only inherits the 1D rod-like morphology but also achieves Na
lattice doping and oxygen vacancy endowment, which facilitates Li
diffusion and improves the structural stability of the material. To this end, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and other characterization are used for analysis. In addition, density functional theory is used to further analyze the influence of oxygen vacancy generation on local transition metal ions, and theoretically explain the mechanism of the electrochemical performance of the samples. Therefore, the modulated sample has a high discharge capacity of 282 mAh g
and a high capacity retention of 90.02% after 150 cycles. At the same time, the voltage decay per cycle is only 0.0028 V, which is much lower than that of the material (0.0038 V per cycle) prepared without this strategy. In summary, a simple synthesis strategy is proposed, which can realize the morphology control of Li
Ni
Co
Mn
O
, doping of Na
lattice, and inducing the formation of oxygen vacancy, providing a feasible idea for related exploration.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24098035</identifier><identifier>PMID: 37175736</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Batteries ; Cathodes ; Decay rate ; Density functional theory ; Doping ; Electric potential ; Electrochemical analysis ; Electrodes ; Ions ; Lattice vacancies ; Lithium ; Manganese Compounds ; Manganese dioxide ; Metal ions ; Molten salts ; Morphology ; Oxides ; Oxygen ; Photoelectron spectroscopy ; Photoelectrons ; Salt ; Scanning transmission electron microscopy ; Sodium ; Sodium Chloride ; Sodium Chloride, Dietary ; Structural stability ; Transition metals ; Transmission electron microscopy ; Voltage</subject><ispartof>International journal of molecular sciences, 2023-04, Vol.24 (9), p.8035</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-83a65d5bceddde277cce46ad1681b036e00209809fe5836ac644ba2c40cf90473</citedby><cites>FETCH-LOGICAL-c419t-83a65d5bceddde277cce46ad1681b036e00209809fe5836ac644ba2c40cf90473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37175736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Hengrui</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Youxiang</creatorcontrib><title>Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>In this work, we synthesized 1D hollow square rod-shaped MnO
, and then obtained Na
lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO
in NaCl molten salt provides numerous anchor points for Li, Co, and Ni ions to directly prepare Li
Ni
Co
Mn
O
on the original morphology. Meanwhile, Na
is also introduced for lattice doping and induces the formation of oxygen vacancy. Therefrom, the modulated sample not only inherits the 1D rod-like morphology but also achieves Na
lattice doping and oxygen vacancy endowment, which facilitates Li
diffusion and improves the structural stability of the material. To this end, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and other characterization are used for analysis. In addition, density functional theory is used to further analyze the influence of oxygen vacancy generation on local transition metal ions, and theoretically explain the mechanism of the electrochemical performance of the samples. Therefore, the modulated sample has a high discharge capacity of 282 mAh g
and a high capacity retention of 90.02% after 150 cycles. At the same time, the voltage decay per cycle is only 0.0028 V, which is much lower than that of the material (0.0038 V per cycle) prepared without this strategy. In summary, a simple synthesis strategy is proposed, which can realize the morphology control of Li
Ni
Co
Mn
O
, doping of Na
lattice, and inducing the formation of oxygen vacancy, providing a feasible idea for related exploration.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Decay rate</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Ions</subject><subject>Lattice vacancies</subject><subject>Lithium</subject><subject>Manganese Compounds</subject><subject>Manganese dioxide</subject><subject>Metal ions</subject><subject>Molten salts</subject><subject>Morphology</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Salt</subject><subject>Scanning transmission electron microscopy</subject><subject>Sodium</subject><subject>Sodium Chloride</subject><subject>Sodium Chloride, Dietary</subject><subject>Structural stability</subject><subject>Transition metals</subject><subject>Transmission electron microscopy</subject><subject>Voltage</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkc1vEzEQxVcIREvhxhlZ4ki3-GPX3j2hKC20UkolBL1ak_HsxlFih12nav57HKVUqebg0fg3T_P0iuKj4BdKtfyrX65HWfG24ap-VZyKSsqSc21eH_UnxbtxXHIulazbt8WJMsLURunTIv0E9oXNICWPxC7jxoee3QS3RRrZ3eOup8DuASGgz4MU2QQXnh6IXft-waawAfRpxyA4duuT7yERu4-rBH1WI4Qdix2b-fKXxz2eFtHR-L5408FqpA9P71nx5_vV7-l1Obv7cTOdzEqsRJvKRoGuXT1Hcs6RNAaRKg1O6EbMudKUDe19tx3VjdKAuqrmILHi2LW8Muqs-HbQ3Wzna3JIIQ2wspvBr2HY2QjevvwJfmH7-GAFF6blXGSFz08KQ_y7pTHZZdwOIR9tZSNkbYRudaYuDlQPK7I-dDGrYS5Ha48xUOfzfGJqWUnV1iovnB8WcIjjOFD3fJPgdp-qPU4145-OfTzD_2NU_wB6BJ1m</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Qiu, Hengrui</creator><creator>Zhang, Rui</creator><creator>Zhang, Youxiang</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20230428</creationdate><title>Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes</title><author>Qiu, Hengrui ; Zhang, Rui ; Zhang, Youxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-83a65d5bceddde277cce46ad1681b036e00209809fe5836ac644ba2c40cf90473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Decay rate</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Ions</topic><topic>Lattice vacancies</topic><topic>Lithium</topic><topic>Manganese Compounds</topic><topic>Manganese dioxide</topic><topic>Metal ions</topic><topic>Molten salts</topic><topic>Morphology</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Salt</topic><topic>Scanning transmission electron microscopy</topic><topic>Sodium</topic><topic>Sodium Chloride</topic><topic>Sodium Chloride, Dietary</topic><topic>Structural stability</topic><topic>Transition metals</topic><topic>Transmission electron microscopy</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hengrui</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Youxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hengrui</au><au>Zhang, Rui</au><au>Zhang, Youxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>24</volume><issue>9</issue><spage>8035</spage><pages>8035-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>In this work, we synthesized 1D hollow square rod-shaped MnO
, and then obtained Na
lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO
in NaCl molten salt provides numerous anchor points for Li, Co, and Ni ions to directly prepare Li
Ni
Co
Mn
O
on the original morphology. Meanwhile, Na
is also introduced for lattice doping and induces the formation of oxygen vacancy. Therefrom, the modulated sample not only inherits the 1D rod-like morphology but also achieves Na
lattice doping and oxygen vacancy endowment, which facilitates Li
diffusion and improves the structural stability of the material. To this end, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and other characterization are used for analysis. In addition, density functional theory is used to further analyze the influence of oxygen vacancy generation on local transition metal ions, and theoretically explain the mechanism of the electrochemical performance of the samples. Therefore, the modulated sample has a high discharge capacity of 282 mAh g
and a high capacity retention of 90.02% after 150 cycles. At the same time, the voltage decay per cycle is only 0.0028 V, which is much lower than that of the material (0.0038 V per cycle) prepared without this strategy. In summary, a simple synthesis strategy is proposed, which can realize the morphology control of Li
Ni
Co
Mn
O
, doping of Na
lattice, and inducing the formation of oxygen vacancy, providing a feasible idea for related exploration.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37175736</pmid><doi>10.3390/ijms24098035</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-04, Vol.24 (9), p.8035 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10179001 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Batteries Cathodes Decay rate Density functional theory Doping Electric potential Electrochemical analysis Electrodes Ions Lattice vacancies Lithium Manganese Compounds Manganese dioxide Metal ions Molten salts Morphology Oxides Oxygen Photoelectron spectroscopy Photoelectrons Salt Scanning transmission electron microscopy Sodium Sodium Chloride Sodium Chloride, Dietary Structural stability Transition metals Transmission electron microscopy Voltage |
title | Na + Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na%20+%20Lattice%20Doping%20Induces%20Oxygen%20Vacancies%20to%20Achieve%20High%20Capacity%20and%20Mitigate%20Voltage%20Decay%20of%20Li-Rich%20Cathodes&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Qiu,%20Hengrui&rft.date=2023-04-28&rft.volume=24&rft.issue=9&rft.spage=8035&rft.pages=8035-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24098035&rft_dat=%3Cgale_pubme%3EA752423953%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812571696&rft_id=info:pmid/37175736&rft_galeid=A752423953&rfr_iscdi=true |