Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid

Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-05, Vol.17 (9), p.8807-8814
Hauptverfasser: Gispen, Willem, Coli, Gabriele M., van Damme, Robin, Royall, C. Patrick, Dijkstra, Marjolein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8814
container_issue 9
container_start_page 8807
container_title ACS nano
container_volume 17
creator Gispen, Willem
Coli, Gabriele M.
van Damme, Robin
Royall, C. Patrick
Dijkstra, Marjolein
description Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.
doi_str_mv 10.1021/acsnano.3c02182
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10173683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805030722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</originalsourceid><addsrcrecordid>eNp1kc1LHDEchoNU1GrP3kqOlbL6S2YmH6ciS3WFFQUVeguZJONEZpJtMiPsf9-RXZdW6Clfz_uE5EXolMA5AUoutMlBh3hemGkl6B46IrJgMxDs16fdvCKH6HPOLwAVF5wdoMOCgygolEfoZp7WedAdvo_duo9p1eIH1zkz-BjwrTOtDj73ODZ4oZPFD6vWJZfxwlvrAvYBD63DV93o7Qnab3SX3ZfteIyern4-zhez5d31zfxyOdMlK4eZlsKWhnEmbc01k6QkDIBZ0JRwSaU2tGaNbLhxdSlr6aQQVWOp0KRywHRxjH5svKux7p01LgxJd2qVfK_TWkXt1b8nwbfqOb4qAoQXTBST4WxjaD_kFpdL9bYHJZVcEPlKJvbb9rYUf48uD6r32biu08HFMSsqoIICOKUTerFBTYo5J9fs3ATUW1tq25batjUlvv79lB3_Xs8EfN8AU1K9xDGF6Wf_q_sDzGif0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805030722</pqid></control><display><type>article</type><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><source>American Chemical Society Journals</source><creator>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</creator><creatorcontrib>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</creatorcontrib><description>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c02182</identifier><identifier>PMID: 37083204</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Physics ; Computer Science ; Condensed Matter ; Modeling and Simulation ; Physics</subject><ispartof>ACS nano, 2023-05, Vol.17 (9), p.8807-8814</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</citedby><cites>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</cites><orcidid>0000-0002-7276-8620 ; 0000-0003-2871-3726 ; 0000-0002-9166-6478 ; 0000-0002-5125-8007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c02182$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c02182$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37083204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04297819$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gispen, Willem</creatorcontrib><creatorcontrib>Coli, Gabriele M.</creatorcontrib><creatorcontrib>van Damme, Robin</creatorcontrib><creatorcontrib>Royall, C. Patrick</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</description><subject>Chemical Physics</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LHDEchoNU1GrP3kqOlbL6S2YmH6ciS3WFFQUVeguZJONEZpJtMiPsf9-RXZdW6Clfz_uE5EXolMA5AUoutMlBh3hemGkl6B46IrJgMxDs16fdvCKH6HPOLwAVF5wdoMOCgygolEfoZp7WedAdvo_duo9p1eIH1zkz-BjwrTOtDj73ODZ4oZPFD6vWJZfxwlvrAvYBD63DV93o7Qnab3SX3ZfteIyern4-zhez5d31zfxyOdMlK4eZlsKWhnEmbc01k6QkDIBZ0JRwSaU2tGaNbLhxdSlr6aQQVWOp0KRywHRxjH5svKux7p01LgxJd2qVfK_TWkXt1b8nwbfqOb4qAoQXTBST4WxjaD_kFpdL9bYHJZVcEPlKJvbb9rYUf48uD6r32biu08HFMSsqoIICOKUTerFBTYo5J9fs3ATUW1tq25batjUlvv79lB3_Xs8EfN8AU1K9xDGF6Wf_q_sDzGif0Q</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Gispen, Willem</creator><creator>Coli, Gabriele M.</creator><creator>van Damme, Robin</creator><creator>Royall, C. Patrick</creator><creator>Dijkstra, Marjolein</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7276-8620</orcidid><orcidid>https://orcid.org/0000-0003-2871-3726</orcidid><orcidid>https://orcid.org/0000-0002-9166-6478</orcidid><orcidid>https://orcid.org/0000-0002-5125-8007</orcidid></search><sort><creationdate>20230509</creationdate><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><author>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Physics</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gispen, Willem</creatorcontrib><creatorcontrib>Coli, Gabriele M.</creatorcontrib><creatorcontrib>van Damme, Robin</creatorcontrib><creatorcontrib>Royall, C. Patrick</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gispen, Willem</au><au>Coli, Gabriele M.</au><au>van Damme, Robin</au><au>Royall, C. Patrick</au><au>Dijkstra, Marjolein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-05-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><spage>8807</spage><epage>8814</epage><pages>8807-8814</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37083204</pmid><doi>10.1021/acsnano.3c02182</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7276-8620</orcidid><orcidid>https://orcid.org/0000-0003-2871-3726</orcidid><orcidid>https://orcid.org/0000-0002-9166-6478</orcidid><orcidid>https://orcid.org/0000-0002-5125-8007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-05, Vol.17 (9), p.8807-8814
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10173683
source American Chemical Society Journals
subjects Chemical Physics
Computer Science
Condensed Matter
Modeling and Simulation
Physics
title Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Polymorph%20Selection%20Mechanism%20of%20Hard%20Spheres%20Hidden%20in%20the%20Fluid&rft.jtitle=ACS%20nano&rft.au=Gispen,%20Willem&rft.date=2023-05-09&rft.volume=17&rft.issue=9&rft.spage=8807&rft.epage=8814&rft.pages=8807-8814&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c02182&rft_dat=%3Cproquest_pubme%3E2805030722%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805030722&rft_id=info:pmid/37083204&rfr_iscdi=true