Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid
Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mech...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-05, Vol.17 (9), p.8807-8814 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8814 |
---|---|
container_issue | 9 |
container_start_page | 8807 |
container_title | ACS nano |
container_volume | 17 |
creator | Gispen, Willem Coli, Gabriele M. van Damme, Robin Royall, C. Patrick Dijkstra, Marjolein |
description | Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase. |
doi_str_mv | 10.1021/acsnano.3c02182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10173683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805030722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</originalsourceid><addsrcrecordid>eNp1kc1LHDEchoNU1GrP3kqOlbL6S2YmH6ciS3WFFQUVeguZJONEZpJtMiPsf9-RXZdW6Clfz_uE5EXolMA5AUoutMlBh3hemGkl6B46IrJgMxDs16fdvCKH6HPOLwAVF5wdoMOCgygolEfoZp7WedAdvo_duo9p1eIH1zkz-BjwrTOtDj73ODZ4oZPFD6vWJZfxwlvrAvYBD63DV93o7Qnab3SX3ZfteIyern4-zhez5d31zfxyOdMlK4eZlsKWhnEmbc01k6QkDIBZ0JRwSaU2tGaNbLhxdSlr6aQQVWOp0KRywHRxjH5svKux7p01LgxJd2qVfK_TWkXt1b8nwbfqOb4qAoQXTBST4WxjaD_kFpdL9bYHJZVcEPlKJvbb9rYUf48uD6r32biu08HFMSsqoIICOKUTerFBTYo5J9fs3ATUW1tq25batjUlvv79lB3_Xs8EfN8AU1K9xDGF6Wf_q_sDzGif0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805030722</pqid></control><display><type>article</type><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><source>American Chemical Society Journals</source><creator>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</creator><creatorcontrib>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</creatorcontrib><description>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c02182</identifier><identifier>PMID: 37083204</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Physics ; Computer Science ; Condensed Matter ; Modeling and Simulation ; Physics</subject><ispartof>ACS nano, 2023-05, Vol.17 (9), p.8807-8814</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</citedby><cites>FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</cites><orcidid>0000-0002-7276-8620 ; 0000-0003-2871-3726 ; 0000-0002-9166-6478 ; 0000-0002-5125-8007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c02182$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c02182$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37083204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04297819$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gispen, Willem</creatorcontrib><creatorcontrib>Coli, Gabriele M.</creatorcontrib><creatorcontrib>van Damme, Robin</creatorcontrib><creatorcontrib>Royall, C. Patrick</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</description><subject>Chemical Physics</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LHDEchoNU1GrP3kqOlbL6S2YmH6ciS3WFFQUVeguZJONEZpJtMiPsf9-RXZdW6Clfz_uE5EXolMA5AUoutMlBh3hemGkl6B46IrJgMxDs16fdvCKH6HPOLwAVF5wdoMOCgygolEfoZp7WedAdvo_duo9p1eIH1zkz-BjwrTOtDj73ODZ4oZPFD6vWJZfxwlvrAvYBD63DV93o7Qnab3SX3ZfteIyern4-zhez5d31zfxyOdMlK4eZlsKWhnEmbc01k6QkDIBZ0JRwSaU2tGaNbLhxdSlr6aQQVWOp0KRywHRxjH5svKux7p01LgxJd2qVfK_TWkXt1b8nwbfqOb4qAoQXTBST4WxjaD_kFpdL9bYHJZVcEPlKJvbb9rYUf48uD6r32biu08HFMSsqoIICOKUTerFBTYo5J9fs3ATUW1tq25batjUlvv79lB3_Xs8EfN8AU1K9xDGF6Wf_q_sDzGif0Q</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Gispen, Willem</creator><creator>Coli, Gabriele M.</creator><creator>van Damme, Robin</creator><creator>Royall, C. Patrick</creator><creator>Dijkstra, Marjolein</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7276-8620</orcidid><orcidid>https://orcid.org/0000-0003-2871-3726</orcidid><orcidid>https://orcid.org/0000-0002-9166-6478</orcidid><orcidid>https://orcid.org/0000-0002-5125-8007</orcidid></search><sort><creationdate>20230509</creationdate><title>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</title><author>Gispen, Willem ; Coli, Gabriele M. ; van Damme, Robin ; Royall, C. Patrick ; Dijkstra, Marjolein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a464t-a98d4c6769db7a691416006d0a217929ac2b6f9f7ceb49b9e9885fd28a15e06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Physics</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gispen, Willem</creatorcontrib><creatorcontrib>Coli, Gabriele M.</creatorcontrib><creatorcontrib>van Damme, Robin</creatorcontrib><creatorcontrib>Royall, C. Patrick</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gispen, Willem</au><au>Coli, Gabriele M.</au><au>van Damme, Robin</au><au>Royall, C. Patrick</au><au>Dijkstra, Marjolein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-05-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><spage>8807</spage><epage>8814</epage><pages>8807-8814</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37083204</pmid><doi>10.1021/acsnano.3c02182</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7276-8620</orcidid><orcidid>https://orcid.org/0000-0003-2871-3726</orcidid><orcidid>https://orcid.org/0000-0002-9166-6478</orcidid><orcidid>https://orcid.org/0000-0002-5125-8007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-05, Vol.17 (9), p.8807-8814 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10173683 |
source | American Chemical Society Journals |
subjects | Chemical Physics Computer Science Condensed Matter Modeling and Simulation Physics |
title | Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Polymorph%20Selection%20Mechanism%20of%20Hard%20Spheres%20Hidden%20in%20the%20Fluid&rft.jtitle=ACS%20nano&rft.au=Gispen,%20Willem&rft.date=2023-05-09&rft.volume=17&rft.issue=9&rft.spage=8807&rft.epage=8814&rft.pages=8807-8814&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c02182&rft_dat=%3Cproquest_pubme%3E2805030722%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805030722&rft_id=info:pmid/37083204&rfr_iscdi=true |