Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study
Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐flu...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2023-06, Vol.44 (8), p.3158-3167 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3167 |
---|---|
container_issue | 8 |
container_start_page | 3158 |
container_title | Human brain mapping |
container_volume | 44 |
creator | Yamaki, Tomohiro Hatakeyama, Naoya Murayama, Takemi Funakura, Mika Hara, Takuya Onodera, Shinji Ito, Daisuke Yakufujiang, Maidinamu Odaki, Masaru Oka, Nobuo Kobayashi, Shigeki |
description | Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness.
Resting FDG‐PET of the primary motor cortex may predict upper limb movements.
Glucose uptake differs between voluntary and involuntary movement at resting FDG.
Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements. |
doi_str_mv | 10.1002/hbm.26270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811939817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</originalsourceid><addsrcrecordid>eNp1ks1u1TAQhSMEoqWw4AWQJTawSGvnx47ZoFJBi1QEC1hbjjO58ZUTB__ckh2PwHvwVjxJfZtSARIrW54zn47PTJY9JfiYYFycDO14XNCC4XvZIcGc5Zjw8v7-TuucV4wcZI-832JMSI3Jw-ygpLzgRUEPs5-fHHRaBW0nZHu0syZOQboFjXYHI0zB75_DACjOMzgE34KDUQcNHrULcuCDnjbIBxng1_cfrZN6Sq-bxJMGbUxU1gMaIcjWGu1HlMqzTO178pUOA1KDs5NWyMMOHKCVoKdtdMsrdIpmbWxI_Ngtj7MHvTQentyeR9mXd28_n13klx_P35-dXuaqqiqcVxKAt7SArqlq2eOK9W3fFFL1DBiFmnQk_V31quYlVazFFYGOKk5K1qQ-Xh5lr1fuHNsROpW8OmnE7PSYkhFWavF3ZdKD2NidIJiwlDBOhBe3BGe_xpSRGLVXYIycwEYvioakCfGGsCR9_o90a6NL4a0qyjC5sfRyVSlnvXfQ37khWOx3QKQdEDc7kLTP_rR_p_w99CQ4WQVX2sDyf5K4ePNhRV4DBTHBmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811670169</pqid></control><display><type>article</type><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><source>Wiley-Blackwell Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</creator><creatorcontrib>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</creatorcontrib><description>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness.
Resting FDG‐PET of the primary motor cortex may predict upper limb movements.
Glucose uptake differs between voluntary and involuntary movement at resting FDG.
Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26270</identifier><identifier>PMID: 36929226</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biomarkers ; Brain ; Brain Injuries, Traumatic - complications ; Brain Injuries, Traumatic - diagnostic imaging ; Brain Injuries, Traumatic - metabolism ; brain injury ; Brain Injury, Chronic ; Cartography ; Communication ; Communication devices ; Consciousness ; Cortex (motor) ; disorder of consciousness ; Emission analysis ; Extremities ; FDG‐PET ; Fluorodeoxyglucose F18 - metabolism ; Glucose ; Glucose - metabolism ; Head injuries ; Homunculus ; Human motion ; Humans ; Metabolism ; Ostomy ; Patients ; Pilot Projects ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radiopharmaceuticals ; Regions ; Rehabilitation ; Review boards ; Spinal cord ; Tomography ; Traumatic brain injury ; Upper Extremity - diagnostic imaging</subject><ispartof>Human brain mapping, 2023-06, Vol.44 (8), p.3158-3167</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</citedby><cites>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</cites><orcidid>0000-0002-3528-3229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171500/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171500/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36929226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaki, Tomohiro</creatorcontrib><creatorcontrib>Hatakeyama, Naoya</creatorcontrib><creatorcontrib>Murayama, Takemi</creatorcontrib><creatorcontrib>Funakura, Mika</creatorcontrib><creatorcontrib>Hara, Takuya</creatorcontrib><creatorcontrib>Onodera, Shinji</creatorcontrib><creatorcontrib>Ito, Daisuke</creatorcontrib><creatorcontrib>Yakufujiang, Maidinamu</creatorcontrib><creatorcontrib>Odaki, Masaru</creatorcontrib><creatorcontrib>Oka, Nobuo</creatorcontrib><creatorcontrib>Kobayashi, Shigeki</creatorcontrib><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness.
Resting FDG‐PET of the primary motor cortex may predict upper limb movements.
Glucose uptake differs between voluntary and involuntary movement at resting FDG.
Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</description><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain Injuries, Traumatic - complications</subject><subject>Brain Injuries, Traumatic - diagnostic imaging</subject><subject>Brain Injuries, Traumatic - metabolism</subject><subject>brain injury</subject><subject>Brain Injury, Chronic</subject><subject>Cartography</subject><subject>Communication</subject><subject>Communication devices</subject><subject>Consciousness</subject><subject>Cortex (motor)</subject><subject>disorder of consciousness</subject><subject>Emission analysis</subject><subject>Extremities</subject><subject>FDG‐PET</subject><subject>Fluorodeoxyglucose F18 - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Head injuries</subject><subject>Homunculus</subject><subject>Human motion</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Ostomy</subject><subject>Patients</subject><subject>Pilot Projects</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiopharmaceuticals</subject><subject>Regions</subject><subject>Rehabilitation</subject><subject>Review boards</subject><subject>Spinal cord</subject><subject>Tomography</subject><subject>Traumatic brain injury</subject><subject>Upper Extremity - diagnostic imaging</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks1u1TAQhSMEoqWw4AWQJTawSGvnx47ZoFJBi1QEC1hbjjO58ZUTB__ckh2PwHvwVjxJfZtSARIrW54zn47PTJY9JfiYYFycDO14XNCC4XvZIcGc5Zjw8v7-TuucV4wcZI-832JMSI3Jw-ygpLzgRUEPs5-fHHRaBW0nZHu0syZOQboFjXYHI0zB75_DACjOMzgE34KDUQcNHrULcuCDnjbIBxng1_cfrZN6Sq-bxJMGbUxU1gMaIcjWGu1HlMqzTO178pUOA1KDs5NWyMMOHKCVoKdtdMsrdIpmbWxI_Ngtj7MHvTQentyeR9mXd28_n13klx_P35-dXuaqqiqcVxKAt7SArqlq2eOK9W3fFFL1DBiFmnQk_V31quYlVazFFYGOKk5K1qQ-Xh5lr1fuHNsROpW8OmnE7PSYkhFWavF3ZdKD2NidIJiwlDBOhBe3BGe_xpSRGLVXYIycwEYvioakCfGGsCR9_o90a6NL4a0qyjC5sfRyVSlnvXfQ37khWOx3QKQdEDc7kLTP_rR_p_w99CQ4WQVX2sDyf5K4ePNhRV4DBTHBmw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yamaki, Tomohiro</creator><creator>Hatakeyama, Naoya</creator><creator>Murayama, Takemi</creator><creator>Funakura, Mika</creator><creator>Hara, Takuya</creator><creator>Onodera, Shinji</creator><creator>Ito, Daisuke</creator><creator>Yakufujiang, Maidinamu</creator><creator>Odaki, Masaru</creator><creator>Oka, Nobuo</creator><creator>Kobayashi, Shigeki</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3528-3229</orcidid></search><sort><creationdate>20230601</creationdate><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><author>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain Injuries, Traumatic - complications</topic><topic>Brain Injuries, Traumatic - diagnostic imaging</topic><topic>Brain Injuries, Traumatic - metabolism</topic><topic>brain injury</topic><topic>Brain Injury, Chronic</topic><topic>Cartography</topic><topic>Communication</topic><topic>Communication devices</topic><topic>Consciousness</topic><topic>Cortex (motor)</topic><topic>disorder of consciousness</topic><topic>Emission analysis</topic><topic>Extremities</topic><topic>FDG‐PET</topic><topic>Fluorodeoxyglucose F18 - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Head injuries</topic><topic>Homunculus</topic><topic>Human motion</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Ostomy</topic><topic>Patients</topic><topic>Pilot Projects</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiopharmaceuticals</topic><topic>Regions</topic><topic>Rehabilitation</topic><topic>Review boards</topic><topic>Spinal cord</topic><topic>Tomography</topic><topic>Traumatic brain injury</topic><topic>Upper Extremity - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaki, Tomohiro</creatorcontrib><creatorcontrib>Hatakeyama, Naoya</creatorcontrib><creatorcontrib>Murayama, Takemi</creatorcontrib><creatorcontrib>Funakura, Mika</creatorcontrib><creatorcontrib>Hara, Takuya</creatorcontrib><creatorcontrib>Onodera, Shinji</creatorcontrib><creatorcontrib>Ito, Daisuke</creatorcontrib><creatorcontrib>Yakufujiang, Maidinamu</creatorcontrib><creatorcontrib>Odaki, Masaru</creatorcontrib><creatorcontrib>Oka, Nobuo</creatorcontrib><creatorcontrib>Kobayashi, Shigeki</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaki, Tomohiro</au><au>Hatakeyama, Naoya</au><au>Murayama, Takemi</au><au>Funakura, Mika</au><au>Hara, Takuya</au><au>Onodera, Shinji</au><au>Ito, Daisuke</au><au>Yakufujiang, Maidinamu</au><au>Odaki, Masaru</au><au>Oka, Nobuo</au><au>Kobayashi, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>3158</spage><epage>3167</epage><pages>3158-3167</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness.
Resting FDG‐PET of the primary motor cortex may predict upper limb movements.
Glucose uptake differs between voluntary and involuntary movement at resting FDG.
Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36929226</pmid><doi>10.1002/hbm.26270</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3528-3229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2023-06, Vol.44 (8), p.3158-3167 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171500 |
source | Wiley-Blackwell Open Access Collection; MEDLINE; Wiley Online Library; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Biomarkers Brain Brain Injuries, Traumatic - complications Brain Injuries, Traumatic - diagnostic imaging Brain Injuries, Traumatic - metabolism brain injury Brain Injury, Chronic Cartography Communication Communication devices Consciousness Cortex (motor) disorder of consciousness Emission analysis Extremities FDG‐PET Fluorodeoxyglucose F18 - metabolism Glucose Glucose - metabolism Head injuries Homunculus Human motion Humans Metabolism Ostomy Patients Pilot Projects Positron emission Positron emission tomography Positron-Emission Tomography - methods Radiopharmaceuticals Regions Rehabilitation Review boards Spinal cord Tomography Traumatic brain injury Upper Extremity - diagnostic imaging |
title | Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20voluntary%20movements%20of%20the%20upper%20extremities%20by%20resting%20state%E2%80%90brain%20regional%20glucose%20metabolism%20in%20patients%20with%20chronic%20severe%20brain%20injury:%20A%20pilot%20study&rft.jtitle=Human%20brain%20mapping&rft.au=Yamaki,%20Tomohiro&rft.date=2023-06-01&rft.volume=44&rft.issue=8&rft.spage=3158&rft.epage=3167&rft.pages=3158-3167&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26270&rft_dat=%3Cproquest_pubme%3E2811939817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811670169&rft_id=info:pmid/36929226&rfr_iscdi=true |