Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study

Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2023-06, Vol.44 (8), p.3158-3167
Hauptverfasser: Yamaki, Tomohiro, Hatakeyama, Naoya, Murayama, Takemi, Funakura, Mika, Hara, Takuya, Onodera, Shinji, Ito, Daisuke, Yakufujiang, Maidinamu, Odaki, Masaru, Oka, Nobuo, Kobayashi, Shigeki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3167
container_issue 8
container_start_page 3158
container_title Human brain mapping
container_volume 44
creator Yamaki, Tomohiro
Hatakeyama, Naoya
Murayama, Takemi
Funakura, Mika
Hara, Takuya
Onodera, Shinji
Ito, Daisuke
Yakufujiang, Maidinamu
Odaki, Masaru
Oka, Nobuo
Kobayashi, Shigeki
description Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness. Resting FDG‐PET of the primary motor cortex may predict upper limb movements. Glucose uptake differs between voluntary and involuntary movement at resting FDG. Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.
doi_str_mv 10.1002/hbm.26270
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811939817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</originalsourceid><addsrcrecordid>eNp1ks1u1TAQhSMEoqWw4AWQJTawSGvnx47ZoFJBi1QEC1hbjjO58ZUTB__ckh2PwHvwVjxJfZtSARIrW54zn47PTJY9JfiYYFycDO14XNCC4XvZIcGc5Zjw8v7-TuucV4wcZI-832JMSI3Jw-ygpLzgRUEPs5-fHHRaBW0nZHu0syZOQboFjXYHI0zB75_DACjOMzgE34KDUQcNHrULcuCDnjbIBxng1_cfrZN6Sq-bxJMGbUxU1gMaIcjWGu1HlMqzTO178pUOA1KDs5NWyMMOHKCVoKdtdMsrdIpmbWxI_Ngtj7MHvTQentyeR9mXd28_n13klx_P35-dXuaqqiqcVxKAt7SArqlq2eOK9W3fFFL1DBiFmnQk_V31quYlVazFFYGOKk5K1qQ-Xh5lr1fuHNsROpW8OmnE7PSYkhFWavF3ZdKD2NidIJiwlDBOhBe3BGe_xpSRGLVXYIycwEYvioakCfGGsCR9_o90a6NL4a0qyjC5sfRyVSlnvXfQ37khWOx3QKQdEDc7kLTP_rR_p_w99CQ4WQVX2sDyf5K4ePNhRV4DBTHBmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811670169</pqid></control><display><type>article</type><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><source>Wiley-Blackwell Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</creator><creatorcontrib>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</creatorcontrib><description>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness. Resting FDG‐PET of the primary motor cortex may predict upper limb movements. Glucose uptake differs between voluntary and involuntary movement at resting FDG. Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26270</identifier><identifier>PMID: 36929226</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biomarkers ; Brain ; Brain Injuries, Traumatic - complications ; Brain Injuries, Traumatic - diagnostic imaging ; Brain Injuries, Traumatic - metabolism ; brain injury ; Brain Injury, Chronic ; Cartography ; Communication ; Communication devices ; Consciousness ; Cortex (motor) ; disorder of consciousness ; Emission analysis ; Extremities ; FDG‐PET ; Fluorodeoxyglucose F18 - metabolism ; Glucose ; Glucose - metabolism ; Head injuries ; Homunculus ; Human motion ; Humans ; Metabolism ; Ostomy ; Patients ; Pilot Projects ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radiopharmaceuticals ; Regions ; Rehabilitation ; Review boards ; Spinal cord ; Tomography ; Traumatic brain injury ; Upper Extremity - diagnostic imaging</subject><ispartof>Human brain mapping, 2023-06, Vol.44 (8), p.3158-3167</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</citedby><cites>FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</cites><orcidid>0000-0002-3528-3229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171500/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171500/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36929226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaki, Tomohiro</creatorcontrib><creatorcontrib>Hatakeyama, Naoya</creatorcontrib><creatorcontrib>Murayama, Takemi</creatorcontrib><creatorcontrib>Funakura, Mika</creatorcontrib><creatorcontrib>Hara, Takuya</creatorcontrib><creatorcontrib>Onodera, Shinji</creatorcontrib><creatorcontrib>Ito, Daisuke</creatorcontrib><creatorcontrib>Yakufujiang, Maidinamu</creatorcontrib><creatorcontrib>Odaki, Masaru</creatorcontrib><creatorcontrib>Oka, Nobuo</creatorcontrib><creatorcontrib>Kobayashi, Shigeki</creatorcontrib><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness. Resting FDG‐PET of the primary motor cortex may predict upper limb movements. Glucose uptake differs between voluntary and involuntary movement at resting FDG. Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</description><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain Injuries, Traumatic - complications</subject><subject>Brain Injuries, Traumatic - diagnostic imaging</subject><subject>Brain Injuries, Traumatic - metabolism</subject><subject>brain injury</subject><subject>Brain Injury, Chronic</subject><subject>Cartography</subject><subject>Communication</subject><subject>Communication devices</subject><subject>Consciousness</subject><subject>Cortex (motor)</subject><subject>disorder of consciousness</subject><subject>Emission analysis</subject><subject>Extremities</subject><subject>FDG‐PET</subject><subject>Fluorodeoxyglucose F18 - metabolism</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Head injuries</subject><subject>Homunculus</subject><subject>Human motion</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Ostomy</subject><subject>Patients</subject><subject>Pilot Projects</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiopharmaceuticals</subject><subject>Regions</subject><subject>Rehabilitation</subject><subject>Review boards</subject><subject>Spinal cord</subject><subject>Tomography</subject><subject>Traumatic brain injury</subject><subject>Upper Extremity - diagnostic imaging</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks1u1TAQhSMEoqWw4AWQJTawSGvnx47ZoFJBi1QEC1hbjjO58ZUTB__ckh2PwHvwVjxJfZtSARIrW54zn47PTJY9JfiYYFycDO14XNCC4XvZIcGc5Zjw8v7-TuucV4wcZI-832JMSI3Jw-ygpLzgRUEPs5-fHHRaBW0nZHu0syZOQboFjXYHI0zB75_DACjOMzgE34KDUQcNHrULcuCDnjbIBxng1_cfrZN6Sq-bxJMGbUxU1gMaIcjWGu1HlMqzTO178pUOA1KDs5NWyMMOHKCVoKdtdMsrdIpmbWxI_Ngtj7MHvTQentyeR9mXd28_n13klx_P35-dXuaqqiqcVxKAt7SArqlq2eOK9W3fFFL1DBiFmnQk_V31quYlVazFFYGOKk5K1qQ-Xh5lr1fuHNsROpW8OmnE7PSYkhFWavF3ZdKD2NidIJiwlDBOhBe3BGe_xpSRGLVXYIycwEYvioakCfGGsCR9_o90a6NL4a0qyjC5sfRyVSlnvXfQ37khWOx3QKQdEDc7kLTP_rR_p_w99CQ4WQVX2sDyf5K4ePNhRV4DBTHBmw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yamaki, Tomohiro</creator><creator>Hatakeyama, Naoya</creator><creator>Murayama, Takemi</creator><creator>Funakura, Mika</creator><creator>Hara, Takuya</creator><creator>Onodera, Shinji</creator><creator>Ito, Daisuke</creator><creator>Yakufujiang, Maidinamu</creator><creator>Odaki, Masaru</creator><creator>Oka, Nobuo</creator><creator>Kobayashi, Shigeki</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3528-3229</orcidid></search><sort><creationdate>20230601</creationdate><title>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</title><author>Yamaki, Tomohiro ; Hatakeyama, Naoya ; Murayama, Takemi ; Funakura, Mika ; Hara, Takuya ; Onodera, Shinji ; Ito, Daisuke ; Yakufujiang, Maidinamu ; Odaki, Masaru ; Oka, Nobuo ; Kobayashi, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-4aee9b62ed845af047fbf82acf7e76e51d1922cfc5936c7b041ed6c913789b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain Injuries, Traumatic - complications</topic><topic>Brain Injuries, Traumatic - diagnostic imaging</topic><topic>Brain Injuries, Traumatic - metabolism</topic><topic>brain injury</topic><topic>Brain Injury, Chronic</topic><topic>Cartography</topic><topic>Communication</topic><topic>Communication devices</topic><topic>Consciousness</topic><topic>Cortex (motor)</topic><topic>disorder of consciousness</topic><topic>Emission analysis</topic><topic>Extremities</topic><topic>FDG‐PET</topic><topic>Fluorodeoxyglucose F18 - metabolism</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Head injuries</topic><topic>Homunculus</topic><topic>Human motion</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Ostomy</topic><topic>Patients</topic><topic>Pilot Projects</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiopharmaceuticals</topic><topic>Regions</topic><topic>Rehabilitation</topic><topic>Review boards</topic><topic>Spinal cord</topic><topic>Tomography</topic><topic>Traumatic brain injury</topic><topic>Upper Extremity - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaki, Tomohiro</creatorcontrib><creatorcontrib>Hatakeyama, Naoya</creatorcontrib><creatorcontrib>Murayama, Takemi</creatorcontrib><creatorcontrib>Funakura, Mika</creatorcontrib><creatorcontrib>Hara, Takuya</creatorcontrib><creatorcontrib>Onodera, Shinji</creatorcontrib><creatorcontrib>Ito, Daisuke</creatorcontrib><creatorcontrib>Yakufujiang, Maidinamu</creatorcontrib><creatorcontrib>Odaki, Masaru</creatorcontrib><creatorcontrib>Oka, Nobuo</creatorcontrib><creatorcontrib>Kobayashi, Shigeki</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaki, Tomohiro</au><au>Hatakeyama, Naoya</au><au>Murayama, Takemi</au><au>Funakura, Mika</au><au>Hara, Takuya</au><au>Onodera, Shinji</au><au>Ito, Daisuke</au><au>Yakufujiang, Maidinamu</au><au>Odaki, Masaru</au><au>Oka, Nobuo</au><au>Kobayashi, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>3158</spage><epage>3167</epage><pages>3158-3167</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18F‐fluorodeoxyglucose positron emission tomography (FDG‐PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG‐PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG‐PET may be a useful and robust biomarker for predicting long‐term recovery of motor function in severe TBI patients with disorders of consciousness. Resting FDG‐PET of the primary motor cortex may predict upper limb movements. Glucose uptake differs between voluntary and involuntary movement at resting FDG. Glucose uptake cutoff in the primary motor cortex may help detect voluntary movements.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36929226</pmid><doi>10.1002/hbm.26270</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3528-3229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2023-06, Vol.44 (8), p.3158-3167
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171500
source Wiley-Blackwell Open Access Collection; MEDLINE; Wiley Online Library; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects Biomarkers
Brain
Brain Injuries, Traumatic - complications
Brain Injuries, Traumatic - diagnostic imaging
Brain Injuries, Traumatic - metabolism
brain injury
Brain Injury, Chronic
Cartography
Communication
Communication devices
Consciousness
Cortex (motor)
disorder of consciousness
Emission analysis
Extremities
FDG‐PET
Fluorodeoxyglucose F18 - metabolism
Glucose
Glucose - metabolism
Head injuries
Homunculus
Human motion
Humans
Metabolism
Ostomy
Patients
Pilot Projects
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Radiopharmaceuticals
Regions
Rehabilitation
Review boards
Spinal cord
Tomography
Traumatic brain injury
Upper Extremity - diagnostic imaging
title Prediction of voluntary movements of the upper extremities by resting state‐brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20voluntary%20movements%20of%20the%20upper%20extremities%20by%20resting%20state%E2%80%90brain%20regional%20glucose%20metabolism%20in%20patients%20with%20chronic%20severe%20brain%20injury:%20A%20pilot%20study&rft.jtitle=Human%20brain%20mapping&rft.au=Yamaki,%20Tomohiro&rft.date=2023-06-01&rft.volume=44&rft.issue=8&rft.spage=3158&rft.epage=3167&rft.pages=3158-3167&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26270&rft_dat=%3Cproquest_pubme%3E2811939817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811670169&rft_id=info:pmid/36929226&rfr_iscdi=true