Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2023-01, Vol.186 (1), p.80-97.e26
Hauptverfasser: Miao, Weili, Porter, Douglas F., Lopez-Pajares, Vanessa, Siprashvili, Zurab, Meyers, Robin M., Bai, Yunhao, Nguyen, Duy T., Ko, Lisa A., Zarnegar, Brian J., Ferguson, Ian D., Mills, Matthew M., Jilly-Rehak, Christie E., Wu, Cheng-Guo, Yang, Yen-Yu, Meyers, Jordan M., Hong, Audrey W., Reynolds, David L., Ramanathan, Muthukumar, Tao, Shiying, Jiang, Sizun, Flynn, Ryan A., Wang, Yinsheng, Nolan, Garry P., Khavari, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97.e26
container_issue 1
container_start_page 80
container_title Cell
container_volume 186
creator Miao, Weili
Porter, Douglas F.
Lopez-Pajares, Vanessa
Siprashvili, Zurab
Meyers, Robin M.
Bai, Yunhao
Nguyen, Duy T.
Ko, Lisa A.
Zarnegar, Brian J.
Ferguson, Ian D.
Mills, Matthew M.
Jilly-Rehak, Christie E.
Wu, Cheng-Guo
Yang, Yen-Yu
Meyers, Jordan M.
Hong, Audrey W.
Reynolds, David L.
Ramanathan, Muthukumar
Tao, Shiying
Jiang, Sizun
Flynn, Ryan A.
Wang, Yinsheng
Nolan, Garry P.
Khavari, Paul A.
description Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation. [Display omitted] •Glucose directly binds to the DDX21 ATP-binding domain and dissociates DDX21 dimers•DDX21 monomers exit the nucleolus to integrate into nuclear RNA processing complexes•DDX21 regulates tissue differentiation in an ATPase-independent manner•DDX21 binds splicing factors to regulate splicing of key pro-differentiation genes Glucose binds to DDX21 RNA helicase to modulate its role in splicing and promote epidermal differentiation.
doi_str_mv 10.1016/j.cell.2022.12.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867422015173</els_id><sourcerecordid>2761975381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5699ca15f5e65af9e98a1eb3e5bdf27040cc1f27b97b2fcb9ced3276866041bc3</originalsourceid><addsrcrecordid>eNqFUcFq3DAUFKUl2WzyAz0UH3uxqydbkgWFEpI2DYQESgO5CVl-3mqxra1kB_L3kbNpaC7tSUJvZt5ohpD3QAugID5tC4t9XzDKWAGsoLR6Q1ZAlcwrkOwtWVGqWF4LWR2Soxi3lNKac35ADkshaC0ErMjtRT9bHzFrXYzeOjNhzM7P7xiklwFDzCafBdzMfZpkw4_r0yzuemfduMnM2GZTos0Lu-sw4DglAefHY_KuM33Ek-dzTW6_ff159j2_urm4PDu9ym1VqynnQilrgHccBTedQlUbwKZE3rQdk7Si1kK6NEo2rLONstiWTIpknVbQ2HJNvux1d3MzYGuTgWB6vQtuMOFBe-P068nofumNv9cpPwmlZEnh47NC8L9njJMeXFxiNSP6OeoSeFlDqUD-F5qMgZJP8DVhe6gNPsaA3YsloMtuobd6YeqlOw1Mp-4S6cPfn3mh_CkrAT7vAZgivXcYdLQOxxSKC2gn3Xr3L_1HQWer1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761975381</pqid></control><display><type>article</type><title>Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Miao, Weili ; Porter, Douglas F. ; Lopez-Pajares, Vanessa ; Siprashvili, Zurab ; Meyers, Robin M. ; Bai, Yunhao ; Nguyen, Duy T. ; Ko, Lisa A. ; Zarnegar, Brian J. ; Ferguson, Ian D. ; Mills, Matthew M. ; Jilly-Rehak, Christie E. ; Wu, Cheng-Guo ; Yang, Yen-Yu ; Meyers, Jordan M. ; Hong, Audrey W. ; Reynolds, David L. ; Ramanathan, Muthukumar ; Tao, Shiying ; Jiang, Sizun ; Flynn, Ryan A. ; Wang, Yinsheng ; Nolan, Garry P. ; Khavari, Paul A.</creator><creatorcontrib>Miao, Weili ; Porter, Douglas F. ; Lopez-Pajares, Vanessa ; Siprashvili, Zurab ; Meyers, Robin M. ; Bai, Yunhao ; Nguyen, Duy T. ; Ko, Lisa A. ; Zarnegar, Brian J. ; Ferguson, Ian D. ; Mills, Matthew M. ; Jilly-Rehak, Christie E. ; Wu, Cheng-Guo ; Yang, Yen-Yu ; Meyers, Jordan M. ; Hong, Audrey W. ; Reynolds, David L. ; Ramanathan, Muthukumar ; Tao, Shiying ; Jiang, Sizun ; Flynn, Ryan A. ; Wang, Yinsheng ; Nolan, Garry P. ; Khavari, Paul A.</creatorcontrib><description>Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation. [Display omitted] •Glucose directly binds to the DDX21 ATP-binding domain and dissociates DDX21 dimers•DDX21 monomers exit the nucleolus to integrate into nuclear RNA processing complexes•DDX21 regulates tissue differentiation in an ATPase-independent manner•DDX21 binds splicing factors to regulate splicing of key pro-differentiation genes Glucose binds to DDX21 RNA helicase to modulate its role in splicing and promote epidermal differentiation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2022.12.004</identifier><identifier>PMID: 36608661</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ABC transporters ; bioenergy ; cell nucleolus ; Cell Nucleolus - metabolism ; Cell Nucleus - metabolism ; DDX21 ; DEAD-box RNA Helicases - metabolism ; dimerization ; glucose ; Glucose - metabolism ; Humans ; introns ; Keratinocytes - cytology ; Keratinocytes - metabolism ; mechanism of action ; mRNA splicing ; protein conformation ; RNA ; RNA helicases ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; tissue differentiation</subject><ispartof>Cell, 2023-01, Vol.186 (1), p.80-97.e26</ispartof><rights>2022</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5699ca15f5e65af9e98a1eb3e5bdf27040cc1f27b97b2fcb9ced3276866041bc3</citedby><cites>FETCH-LOGICAL-c489t-5699ca15f5e65af9e98a1eb3e5bdf27040cc1f27b97b2fcb9ced3276866041bc3</cites><orcidid>0000-0003-0098-4989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867422015173$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36608661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Weili</creatorcontrib><creatorcontrib>Porter, Douglas F.</creatorcontrib><creatorcontrib>Lopez-Pajares, Vanessa</creatorcontrib><creatorcontrib>Siprashvili, Zurab</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Bai, Yunhao</creatorcontrib><creatorcontrib>Nguyen, Duy T.</creatorcontrib><creatorcontrib>Ko, Lisa A.</creatorcontrib><creatorcontrib>Zarnegar, Brian J.</creatorcontrib><creatorcontrib>Ferguson, Ian D.</creatorcontrib><creatorcontrib>Mills, Matthew M.</creatorcontrib><creatorcontrib>Jilly-Rehak, Christie E.</creatorcontrib><creatorcontrib>Wu, Cheng-Guo</creatorcontrib><creatorcontrib>Yang, Yen-Yu</creatorcontrib><creatorcontrib>Meyers, Jordan M.</creatorcontrib><creatorcontrib>Hong, Audrey W.</creatorcontrib><creatorcontrib>Reynolds, David L.</creatorcontrib><creatorcontrib>Ramanathan, Muthukumar</creatorcontrib><creatorcontrib>Tao, Shiying</creatorcontrib><creatorcontrib>Jiang, Sizun</creatorcontrib><creatorcontrib>Flynn, Ryan A.</creatorcontrib><creatorcontrib>Wang, Yinsheng</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Khavari, Paul A.</creatorcontrib><title>Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation</title><title>Cell</title><addtitle>Cell</addtitle><description>Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation. [Display omitted] •Glucose directly binds to the DDX21 ATP-binding domain and dissociates DDX21 dimers•DDX21 monomers exit the nucleolus to integrate into nuclear RNA processing complexes•DDX21 regulates tissue differentiation in an ATPase-independent manner•DDX21 binds splicing factors to regulate splicing of key pro-differentiation genes Glucose binds to DDX21 RNA helicase to modulate its role in splicing and promote epidermal differentiation.</description><subject>ABC transporters</subject><subject>bioenergy</subject><subject>cell nucleolus</subject><subject>Cell Nucleolus - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>DDX21</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>dimerization</subject><subject>glucose</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>introns</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - metabolism</subject><subject>mechanism of action</subject><subject>mRNA splicing</subject><subject>protein conformation</subject><subject>RNA</subject><subject>RNA helicases</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>tissue differentiation</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFq3DAUFKUl2WzyAz0UH3uxqydbkgWFEpI2DYQESgO5CVl-3mqxra1kB_L3kbNpaC7tSUJvZt5ohpD3QAugID5tC4t9XzDKWAGsoLR6Q1ZAlcwrkOwtWVGqWF4LWR2Soxi3lNKac35ADkshaC0ErMjtRT9bHzFrXYzeOjNhzM7P7xiklwFDzCafBdzMfZpkw4_r0yzuemfduMnM2GZTos0Lu-sw4DglAefHY_KuM33Ek-dzTW6_ff159j2_urm4PDu9ym1VqynnQilrgHccBTedQlUbwKZE3rQdk7Si1kK6NEo2rLONstiWTIpknVbQ2HJNvux1d3MzYGuTgWB6vQtuMOFBe-P068nofumNv9cpPwmlZEnh47NC8L9njJMeXFxiNSP6OeoSeFlDqUD-F5qMgZJP8DVhe6gNPsaA3YsloMtuobd6YeqlOw1Mp-4S6cPfn3mh_CkrAT7vAZgivXcYdLQOxxSKC2gn3Xr3L_1HQWer1g</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Miao, Weili</creator><creator>Porter, Douglas F.</creator><creator>Lopez-Pajares, Vanessa</creator><creator>Siprashvili, Zurab</creator><creator>Meyers, Robin M.</creator><creator>Bai, Yunhao</creator><creator>Nguyen, Duy T.</creator><creator>Ko, Lisa A.</creator><creator>Zarnegar, Brian J.</creator><creator>Ferguson, Ian D.</creator><creator>Mills, Matthew M.</creator><creator>Jilly-Rehak, Christie E.</creator><creator>Wu, Cheng-Guo</creator><creator>Yang, Yen-Yu</creator><creator>Meyers, Jordan M.</creator><creator>Hong, Audrey W.</creator><creator>Reynolds, David L.</creator><creator>Ramanathan, Muthukumar</creator><creator>Tao, Shiying</creator><creator>Jiang, Sizun</creator><creator>Flynn, Ryan A.</creator><creator>Wang, Yinsheng</creator><creator>Nolan, Garry P.</creator><creator>Khavari, Paul A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0098-4989</orcidid></search><sort><creationdate>20230105</creationdate><title>Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation</title><author>Miao, Weili ; Porter, Douglas F. ; Lopez-Pajares, Vanessa ; Siprashvili, Zurab ; Meyers, Robin M. ; Bai, Yunhao ; Nguyen, Duy T. ; Ko, Lisa A. ; Zarnegar, Brian J. ; Ferguson, Ian D. ; Mills, Matthew M. ; Jilly-Rehak, Christie E. ; Wu, Cheng-Guo ; Yang, Yen-Yu ; Meyers, Jordan M. ; Hong, Audrey W. ; Reynolds, David L. ; Ramanathan, Muthukumar ; Tao, Shiying ; Jiang, Sizun ; Flynn, Ryan A. ; Wang, Yinsheng ; Nolan, Garry P. ; Khavari, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5699ca15f5e65af9e98a1eb3e5bdf27040cc1f27b97b2fcb9ced3276866041bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ABC transporters</topic><topic>bioenergy</topic><topic>cell nucleolus</topic><topic>Cell Nucleolus - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>DDX21</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>dimerization</topic><topic>glucose</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>introns</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - metabolism</topic><topic>mechanism of action</topic><topic>mRNA splicing</topic><topic>protein conformation</topic><topic>RNA</topic><topic>RNA helicases</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>tissue differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Weili</creatorcontrib><creatorcontrib>Porter, Douglas F.</creatorcontrib><creatorcontrib>Lopez-Pajares, Vanessa</creatorcontrib><creatorcontrib>Siprashvili, Zurab</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Bai, Yunhao</creatorcontrib><creatorcontrib>Nguyen, Duy T.</creatorcontrib><creatorcontrib>Ko, Lisa A.</creatorcontrib><creatorcontrib>Zarnegar, Brian J.</creatorcontrib><creatorcontrib>Ferguson, Ian D.</creatorcontrib><creatorcontrib>Mills, Matthew M.</creatorcontrib><creatorcontrib>Jilly-Rehak, Christie E.</creatorcontrib><creatorcontrib>Wu, Cheng-Guo</creatorcontrib><creatorcontrib>Yang, Yen-Yu</creatorcontrib><creatorcontrib>Meyers, Jordan M.</creatorcontrib><creatorcontrib>Hong, Audrey W.</creatorcontrib><creatorcontrib>Reynolds, David L.</creatorcontrib><creatorcontrib>Ramanathan, Muthukumar</creatorcontrib><creatorcontrib>Tao, Shiying</creatorcontrib><creatorcontrib>Jiang, Sizun</creatorcontrib><creatorcontrib>Flynn, Ryan A.</creatorcontrib><creatorcontrib>Wang, Yinsheng</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Khavari, Paul A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Weili</au><au>Porter, Douglas F.</au><au>Lopez-Pajares, Vanessa</au><au>Siprashvili, Zurab</au><au>Meyers, Robin M.</au><au>Bai, Yunhao</au><au>Nguyen, Duy T.</au><au>Ko, Lisa A.</au><au>Zarnegar, Brian J.</au><au>Ferguson, Ian D.</au><au>Mills, Matthew M.</au><au>Jilly-Rehak, Christie E.</au><au>Wu, Cheng-Guo</au><au>Yang, Yen-Yu</au><au>Meyers, Jordan M.</au><au>Hong, Audrey W.</au><au>Reynolds, David L.</au><au>Ramanathan, Muthukumar</au><au>Tao, Shiying</au><au>Jiang, Sizun</au><au>Flynn, Ryan A.</au><au>Wang, Yinsheng</au><au>Nolan, Garry P.</au><au>Khavari, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>186</volume><issue>1</issue><spage>80</spage><epage>97.e26</epage><pages>80-97.e26</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation. [Display omitted] •Glucose directly binds to the DDX21 ATP-binding domain and dissociates DDX21 dimers•DDX21 monomers exit the nucleolus to integrate into nuclear RNA processing complexes•DDX21 regulates tissue differentiation in an ATPase-independent manner•DDX21 binds splicing factors to regulate splicing of key pro-differentiation genes Glucose binds to DDX21 RNA helicase to modulate its role in splicing and promote epidermal differentiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36608661</pmid><doi>10.1016/j.cell.2022.12.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0098-4989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2023-01, Vol.186 (1), p.80-97.e26
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10171372
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects ABC transporters
bioenergy
cell nucleolus
Cell Nucleolus - metabolism
Cell Nucleus - metabolism
DDX21
DEAD-box RNA Helicases - metabolism
dimerization
glucose
Glucose - metabolism
Humans
introns
Keratinocytes - cytology
Keratinocytes - metabolism
mechanism of action
mRNA splicing
protein conformation
RNA
RNA helicases
RNA, Messenger - genetics
RNA, Messenger - metabolism
tissue differentiation
title Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20dissociates%20DDX21%20dimers%20to%20regulate%20mRNA%20splicing%20and%20tissue%20differentiation&rft.jtitle=Cell&rft.au=Miao,%20Weili&rft.date=2023-01-05&rft.volume=186&rft.issue=1&rft.spage=80&rft.epage=97.e26&rft.pages=80-97.e26&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2022.12.004&rft_dat=%3Cproquest_pubme%3E2761975381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761975381&rft_id=info:pmid/36608661&rft_els_id=S0092867422015173&rfr_iscdi=true