Risk prediction models for endometrial cancer: development and validation in an international consortium

Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 2023-05, Vol.115 (5), p.552-559
Hauptverfasser: Shi, Joy, Kraft, Peter, Rosner, Bernard A, Benavente, Yolanda, Black, Amanda, Brinton, Louise A, Chen, Chu, Clarke, Megan A, Cook, Linda S, Costas, Laura, Dal Maso, Luigino, Freudenheim, Jo L, Frias-Gomez, Jon, Friedenreich, Christine M, Garcia-Closas, Montserrat, Goodman, Marc T, Johnson, Lisa, La Vecchia, Carlo, Levi, Fabio, Lissowska, Jolanta, Lu, Lingeng, McCann, Susan E, Moysich, Kirsten B, Negri, Eva, O'Connell, Kelli, Parazzini, Fabio, Petruzella, Stacey, Polesel, Jerry, Ponte, Jeanette, Rebbeck, Timothy R, Reynolds, Peggy, Ricceri, Fulvio, Risch, Harvey A, Sacerdote, Carlotta, Setiawan, Veronica W, Shu, Xiao-Ou, Spurdle, Amanda B, Trabert, Britton, Webb, Penelope M, Wentzensen, Nicolas, Wilkens, Lynne R, Xu, Wang Hong, Yang, Hannah P, Yu, Herbert, Du, Mengmeng, De Vivo, Immaculata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue 5
container_start_page 552
container_title JNCI : Journal of the National Cancer Institute
container_volume 115
creator Shi, Joy
Kraft, Peter
Rosner, Bernard A
Benavente, Yolanda
Black, Amanda
Brinton, Louise A
Chen, Chu
Clarke, Megan A
Cook, Linda S
Costas, Laura
Dal Maso, Luigino
Freudenheim, Jo L
Frias-Gomez, Jon
Friedenreich, Christine M
Garcia-Closas, Montserrat
Goodman, Marc T
Johnson, Lisa
La Vecchia, Carlo
Levi, Fabio
Lissowska, Jolanta
Lu, Lingeng
McCann, Susan E
Moysich, Kirsten B
Negri, Eva
O'Connell, Kelli
Parazzini, Fabio
Petruzella, Stacey
Polesel, Jerry
Ponte, Jeanette
Rebbeck, Timothy R
Reynolds, Peggy
Ricceri, Fulvio
Risch, Harvey A
Sacerdote, Carlotta
Setiawan, Veronica W
Shu, Xiao-Ou
Spurdle, Amanda B
Trabert, Britton
Webb, Penelope M
Wentzensen, Nicolas
Wilkens, Lynne R
Xu, Wang Hong
Yang, Hannah P
Yu, Herbert
Du, Mengmeng
De Vivo, Immaculata
description Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Results Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). Conclusions Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.
doi_str_mv 10.1093/jnci/djad014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10165481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jnci/djad014</oup_id><sourcerecordid>2768811596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</originalsourceid><addsrcrecordid>eNp9kc1LHTEUxYMo9WnduS4DLtpFR5NMMjNxI-VhVRAKpa5DXnKn5jWTTJOZB_73zfuoqAuzSODkdw_33oPQKcHnBIvqYum1vTBLZTBhe2hGWI1LSjDfRzOMaVO2bcMO0VFKS5yPoOwDOqzqOsuUz9DjT5v-FEMEY_Vogy_6YMCloguxAG9CD2O0yhVaeQ3xsjCwAheGHvxYKG-KlXLWqE2l9VnJ9wjRb5R1WfApxNFO_Ud00CmX4GT3HqOH79e_5rfl_Y-bu_m3-1IzxscSjDCk5WqhmrZrGyUImEZwVi-g4qQhpKUV5a3qQAswYCjmja4EhwVWAipSHaOrre8wLXowOjcalZNDtL2KTzIoK1__ePsof4eVJJjUnLVrhy87hxj-TpBG2dukwTnlIUxJ0iYvjxAu6oyevUGXYcrTuyQrzHOvjG6or1tKx5BShO65G4LlOkO5zlDuMsz4p5cTPMP_Q8vA5y0QpuF9q3_U5Kkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051824296</pqid></control><display><type>article</type><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</creator><creatorcontrib>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</creatorcontrib><description>Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Results Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). Conclusions Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</description><identifier>ISSN: 0027-8874</identifier><identifier>ISSN: 1460-2105</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djad014</identifier><identifier>PMID: 36688725</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Cancer ; Cancer screening ; Confidence intervals ; Consortia ; Editor's Choice ; Endometrial cancer ; Endometrial Neoplasms - epidemiology ; Endometrial Neoplasms - genetics ; Endometrium ; Epidemiology ; Estimates ; Female ; Genetic factors ; Health risks ; Humans ; Hysterectomy ; Incidence ; Mathematical models ; Medical screening ; Ovarian cancer ; Ovarian Neoplasms - epidemiology ; Population studies ; Post-menopause ; Prediction models ; Public health ; Risk Factors ; ROC Curve ; Uterine cancer</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2023-05, Vol.115 (5), p.552-559</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</citedby><cites>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</cites><orcidid>0000-0001-6907-0056 ; 0000-0002-4799-1900 ; 0000-0001-6163-200X ; 0000-0002-4234-7999 ; 0000-0003-1251-0836 ; 0000-0001-9871-0809 ; 0000-0002-2079-8705 ; 0000-0002-8008-5096 ; 0000-0002-1539-6090 ; 0000-0002-0711-8314 ; 0000-0003-2755-302X ; 0000-0001-8749-9737 ; 0000-0003-0435-7376 ; 0000-0002-4472-8103 ; 0000-0001-5624-4854 ; 0000-0003-2695-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36688725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Joy</creatorcontrib><creatorcontrib>Kraft, Peter</creatorcontrib><creatorcontrib>Rosner, Bernard A</creatorcontrib><creatorcontrib>Benavente, Yolanda</creatorcontrib><creatorcontrib>Black, Amanda</creatorcontrib><creatorcontrib>Brinton, Louise A</creatorcontrib><creatorcontrib>Chen, Chu</creatorcontrib><creatorcontrib>Clarke, Megan A</creatorcontrib><creatorcontrib>Cook, Linda S</creatorcontrib><creatorcontrib>Costas, Laura</creatorcontrib><creatorcontrib>Dal Maso, Luigino</creatorcontrib><creatorcontrib>Freudenheim, Jo L</creatorcontrib><creatorcontrib>Frias-Gomez, Jon</creatorcontrib><creatorcontrib>Friedenreich, Christine M</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Goodman, Marc T</creatorcontrib><creatorcontrib>Johnson, Lisa</creatorcontrib><creatorcontrib>La Vecchia, Carlo</creatorcontrib><creatorcontrib>Levi, Fabio</creatorcontrib><creatorcontrib>Lissowska, Jolanta</creatorcontrib><creatorcontrib>Lu, Lingeng</creatorcontrib><creatorcontrib>McCann, Susan E</creatorcontrib><creatorcontrib>Moysich, Kirsten B</creatorcontrib><creatorcontrib>Negri, Eva</creatorcontrib><creatorcontrib>O'Connell, Kelli</creatorcontrib><creatorcontrib>Parazzini, Fabio</creatorcontrib><creatorcontrib>Petruzella, Stacey</creatorcontrib><creatorcontrib>Polesel, Jerry</creatorcontrib><creatorcontrib>Ponte, Jeanette</creatorcontrib><creatorcontrib>Rebbeck, Timothy R</creatorcontrib><creatorcontrib>Reynolds, Peggy</creatorcontrib><creatorcontrib>Ricceri, Fulvio</creatorcontrib><creatorcontrib>Risch, Harvey A</creatorcontrib><creatorcontrib>Sacerdote, Carlotta</creatorcontrib><creatorcontrib>Setiawan, Veronica W</creatorcontrib><creatorcontrib>Shu, Xiao-Ou</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Trabert, Britton</creatorcontrib><creatorcontrib>Webb, Penelope M</creatorcontrib><creatorcontrib>Wentzensen, Nicolas</creatorcontrib><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Xu, Wang Hong</creatorcontrib><creatorcontrib>Yang, Hannah P</creatorcontrib><creatorcontrib>Yu, Herbert</creatorcontrib><creatorcontrib>Du, Mengmeng</creatorcontrib><creatorcontrib>De Vivo, Immaculata</creatorcontrib><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Results Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). Conclusions Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</description><subject>Cancer</subject><subject>Cancer screening</subject><subject>Confidence intervals</subject><subject>Consortia</subject><subject>Editor's Choice</subject><subject>Endometrial cancer</subject><subject>Endometrial Neoplasms - epidemiology</subject><subject>Endometrial Neoplasms - genetics</subject><subject>Endometrium</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Female</subject><subject>Genetic factors</subject><subject>Health risks</subject><subject>Humans</subject><subject>Hysterectomy</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Medical screening</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - epidemiology</subject><subject>Population studies</subject><subject>Post-menopause</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Uterine cancer</subject><issn>0027-8874</issn><issn>1460-2105</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1LHTEUxYMo9WnduS4DLtpFR5NMMjNxI-VhVRAKpa5DXnKn5jWTTJOZB_73zfuoqAuzSODkdw_33oPQKcHnBIvqYum1vTBLZTBhe2hGWI1LSjDfRzOMaVO2bcMO0VFKS5yPoOwDOqzqOsuUz9DjT5v-FEMEY_Vogy_6YMCloguxAG9CD2O0yhVaeQ3xsjCwAheGHvxYKG-KlXLWqE2l9VnJ9wjRb5R1WfApxNFO_Ud00CmX4GT3HqOH79e_5rfl_Y-bu_m3-1IzxscSjDCk5WqhmrZrGyUImEZwVi-g4qQhpKUV5a3qQAswYCjmja4EhwVWAipSHaOrre8wLXowOjcalZNDtL2KTzIoK1__ePsof4eVJJjUnLVrhy87hxj-TpBG2dukwTnlIUxJ0iYvjxAu6oyevUGXYcrTuyQrzHOvjG6or1tKx5BShO65G4LlOkO5zlDuMsz4p5cTPMP_Q8vA5y0QpuF9q3_U5Kkk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Shi, Joy</creator><creator>Kraft, Peter</creator><creator>Rosner, Bernard A</creator><creator>Benavente, Yolanda</creator><creator>Black, Amanda</creator><creator>Brinton, Louise A</creator><creator>Chen, Chu</creator><creator>Clarke, Megan A</creator><creator>Cook, Linda S</creator><creator>Costas, Laura</creator><creator>Dal Maso, Luigino</creator><creator>Freudenheim, Jo L</creator><creator>Frias-Gomez, Jon</creator><creator>Friedenreich, Christine M</creator><creator>Garcia-Closas, Montserrat</creator><creator>Goodman, Marc T</creator><creator>Johnson, Lisa</creator><creator>La Vecchia, Carlo</creator><creator>Levi, Fabio</creator><creator>Lissowska, Jolanta</creator><creator>Lu, Lingeng</creator><creator>McCann, Susan E</creator><creator>Moysich, Kirsten B</creator><creator>Negri, Eva</creator><creator>O'Connell, Kelli</creator><creator>Parazzini, Fabio</creator><creator>Petruzella, Stacey</creator><creator>Polesel, Jerry</creator><creator>Ponte, Jeanette</creator><creator>Rebbeck, Timothy R</creator><creator>Reynolds, Peggy</creator><creator>Ricceri, Fulvio</creator><creator>Risch, Harvey A</creator><creator>Sacerdote, Carlotta</creator><creator>Setiawan, Veronica W</creator><creator>Shu, Xiao-Ou</creator><creator>Spurdle, Amanda B</creator><creator>Trabert, Britton</creator><creator>Webb, Penelope M</creator><creator>Wentzensen, Nicolas</creator><creator>Wilkens, Lynne R</creator><creator>Xu, Wang Hong</creator><creator>Yang, Hannah P</creator><creator>Yu, Herbert</creator><creator>Du, Mengmeng</creator><creator>De Vivo, Immaculata</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6907-0056</orcidid><orcidid>https://orcid.org/0000-0002-4799-1900</orcidid><orcidid>https://orcid.org/0000-0001-6163-200X</orcidid><orcidid>https://orcid.org/0000-0002-4234-7999</orcidid><orcidid>https://orcid.org/0000-0003-1251-0836</orcidid><orcidid>https://orcid.org/0000-0001-9871-0809</orcidid><orcidid>https://orcid.org/0000-0002-2079-8705</orcidid><orcidid>https://orcid.org/0000-0002-8008-5096</orcidid><orcidid>https://orcid.org/0000-0002-1539-6090</orcidid><orcidid>https://orcid.org/0000-0002-0711-8314</orcidid><orcidid>https://orcid.org/0000-0003-2755-302X</orcidid><orcidid>https://orcid.org/0000-0001-8749-9737</orcidid><orcidid>https://orcid.org/0000-0003-0435-7376</orcidid><orcidid>https://orcid.org/0000-0002-4472-8103</orcidid><orcidid>https://orcid.org/0000-0001-5624-4854</orcidid><orcidid>https://orcid.org/0000-0003-2695-5799</orcidid></search><sort><creationdate>20230508</creationdate><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><author>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Cancer screening</topic><topic>Confidence intervals</topic><topic>Consortia</topic><topic>Editor's Choice</topic><topic>Endometrial cancer</topic><topic>Endometrial Neoplasms - epidemiology</topic><topic>Endometrial Neoplasms - genetics</topic><topic>Endometrium</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Female</topic><topic>Genetic factors</topic><topic>Health risks</topic><topic>Humans</topic><topic>Hysterectomy</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Medical screening</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - epidemiology</topic><topic>Population studies</topic><topic>Post-menopause</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Uterine cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Joy</creatorcontrib><creatorcontrib>Kraft, Peter</creatorcontrib><creatorcontrib>Rosner, Bernard A</creatorcontrib><creatorcontrib>Benavente, Yolanda</creatorcontrib><creatorcontrib>Black, Amanda</creatorcontrib><creatorcontrib>Brinton, Louise A</creatorcontrib><creatorcontrib>Chen, Chu</creatorcontrib><creatorcontrib>Clarke, Megan A</creatorcontrib><creatorcontrib>Cook, Linda S</creatorcontrib><creatorcontrib>Costas, Laura</creatorcontrib><creatorcontrib>Dal Maso, Luigino</creatorcontrib><creatorcontrib>Freudenheim, Jo L</creatorcontrib><creatorcontrib>Frias-Gomez, Jon</creatorcontrib><creatorcontrib>Friedenreich, Christine M</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Goodman, Marc T</creatorcontrib><creatorcontrib>Johnson, Lisa</creatorcontrib><creatorcontrib>La Vecchia, Carlo</creatorcontrib><creatorcontrib>Levi, Fabio</creatorcontrib><creatorcontrib>Lissowska, Jolanta</creatorcontrib><creatorcontrib>Lu, Lingeng</creatorcontrib><creatorcontrib>McCann, Susan E</creatorcontrib><creatorcontrib>Moysich, Kirsten B</creatorcontrib><creatorcontrib>Negri, Eva</creatorcontrib><creatorcontrib>O'Connell, Kelli</creatorcontrib><creatorcontrib>Parazzini, Fabio</creatorcontrib><creatorcontrib>Petruzella, Stacey</creatorcontrib><creatorcontrib>Polesel, Jerry</creatorcontrib><creatorcontrib>Ponte, Jeanette</creatorcontrib><creatorcontrib>Rebbeck, Timothy R</creatorcontrib><creatorcontrib>Reynolds, Peggy</creatorcontrib><creatorcontrib>Ricceri, Fulvio</creatorcontrib><creatorcontrib>Risch, Harvey A</creatorcontrib><creatorcontrib>Sacerdote, Carlotta</creatorcontrib><creatorcontrib>Setiawan, Veronica W</creatorcontrib><creatorcontrib>Shu, Xiao-Ou</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Trabert, Britton</creatorcontrib><creatorcontrib>Webb, Penelope M</creatorcontrib><creatorcontrib>Wentzensen, Nicolas</creatorcontrib><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Xu, Wang Hong</creatorcontrib><creatorcontrib>Yang, Hannah P</creatorcontrib><creatorcontrib>Yu, Herbert</creatorcontrib><creatorcontrib>Du, Mengmeng</creatorcontrib><creatorcontrib>De Vivo, Immaculata</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Joy</au><au>Kraft, Peter</au><au>Rosner, Bernard A</au><au>Benavente, Yolanda</au><au>Black, Amanda</au><au>Brinton, Louise A</au><au>Chen, Chu</au><au>Clarke, Megan A</au><au>Cook, Linda S</au><au>Costas, Laura</au><au>Dal Maso, Luigino</au><au>Freudenheim, Jo L</au><au>Frias-Gomez, Jon</au><au>Friedenreich, Christine M</au><au>Garcia-Closas, Montserrat</au><au>Goodman, Marc T</au><au>Johnson, Lisa</au><au>La Vecchia, Carlo</au><au>Levi, Fabio</au><au>Lissowska, Jolanta</au><au>Lu, Lingeng</au><au>McCann, Susan E</au><au>Moysich, Kirsten B</au><au>Negri, Eva</au><au>O'Connell, Kelli</au><au>Parazzini, Fabio</au><au>Petruzella, Stacey</au><au>Polesel, Jerry</au><au>Ponte, Jeanette</au><au>Rebbeck, Timothy R</au><au>Reynolds, Peggy</au><au>Ricceri, Fulvio</au><au>Risch, Harvey A</au><au>Sacerdote, Carlotta</au><au>Setiawan, Veronica W</au><au>Shu, Xiao-Ou</au><au>Spurdle, Amanda B</au><au>Trabert, Britton</au><au>Webb, Penelope M</au><au>Wentzensen, Nicolas</au><au>Wilkens, Lynne R</au><au>Xu, Wang Hong</au><au>Yang, Hannah P</au><au>Yu, Herbert</au><au>Du, Mengmeng</au><au>De Vivo, Immaculata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk prediction models for endometrial cancer: development and validation in an international consortium</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>115</volume><issue>5</issue><spage>552</spage><epage>559</epage><pages>552-559</pages><issn>0027-8874</issn><issn>1460-2105</issn><eissn>1460-2105</eissn><abstract>Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Results Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). Conclusions Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36688725</pmid><doi>10.1093/jnci/djad014</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6907-0056</orcidid><orcidid>https://orcid.org/0000-0002-4799-1900</orcidid><orcidid>https://orcid.org/0000-0001-6163-200X</orcidid><orcidid>https://orcid.org/0000-0002-4234-7999</orcidid><orcidid>https://orcid.org/0000-0003-1251-0836</orcidid><orcidid>https://orcid.org/0000-0001-9871-0809</orcidid><orcidid>https://orcid.org/0000-0002-2079-8705</orcidid><orcidid>https://orcid.org/0000-0002-8008-5096</orcidid><orcidid>https://orcid.org/0000-0002-1539-6090</orcidid><orcidid>https://orcid.org/0000-0002-0711-8314</orcidid><orcidid>https://orcid.org/0000-0003-2755-302X</orcidid><orcidid>https://orcid.org/0000-0001-8749-9737</orcidid><orcidid>https://orcid.org/0000-0003-0435-7376</orcidid><orcidid>https://orcid.org/0000-0002-4472-8103</orcidid><orcidid>https://orcid.org/0000-0001-5624-4854</orcidid><orcidid>https://orcid.org/0000-0003-2695-5799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8874
ispartof JNCI : Journal of the National Cancer Institute, 2023-05, Vol.115 (5), p.552-559
issn 0027-8874
1460-2105
1460-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10165481
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Cancer
Cancer screening
Confidence intervals
Consortia
Editor's Choice
Endometrial cancer
Endometrial Neoplasms - epidemiology
Endometrial Neoplasms - genetics
Endometrium
Epidemiology
Estimates
Female
Genetic factors
Health risks
Humans
Hysterectomy
Incidence
Mathematical models
Medical screening
Ovarian cancer
Ovarian Neoplasms - epidemiology
Population studies
Post-menopause
Prediction models
Public health
Risk Factors
ROC Curve
Uterine cancer
title Risk prediction models for endometrial cancer: development and validation in an international consortium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20prediction%20models%20for%20endometrial%20cancer:%20development%20and%20validation%20in%20an%20international%20consortium&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Shi,%20Joy&rft.date=2023-05-08&rft.volume=115&rft.issue=5&rft.spage=552&rft.epage=559&rft.pages=552-559&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djad014&rft_dat=%3Cproquest_pubme%3E2768811596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051824296&rft_id=info:pmid/36688725&rft_oup_id=10.1093/jnci/djad014&rfr_iscdi=true