Risk prediction models for endometrial cancer: development and validation in an international consortium
Abstract Background Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. Methods W...
Gespeichert in:
Veröffentlicht in: | JNCI : Journal of the National Cancer Institute 2023-05, Vol.115 (5), p.552-559 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559 |
---|---|
container_issue | 5 |
container_start_page | 552 |
container_title | JNCI : Journal of the National Cancer Institute |
container_volume | 115 |
creator | Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata |
description | Abstract
Background
Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors.
Methods
We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Results
Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59).
Conclusions
Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations. |
doi_str_mv | 10.1093/jnci/djad014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10165481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jnci/djad014</oup_id><sourcerecordid>2768811596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</originalsourceid><addsrcrecordid>eNp9kc1LHTEUxYMo9WnduS4DLtpFR5NMMjNxI-VhVRAKpa5DXnKn5jWTTJOZB_73zfuoqAuzSODkdw_33oPQKcHnBIvqYum1vTBLZTBhe2hGWI1LSjDfRzOMaVO2bcMO0VFKS5yPoOwDOqzqOsuUz9DjT5v-FEMEY_Vogy_6YMCloguxAG9CD2O0yhVaeQ3xsjCwAheGHvxYKG-KlXLWqE2l9VnJ9wjRb5R1WfApxNFO_Ud00CmX4GT3HqOH79e_5rfl_Y-bu_m3-1IzxscSjDCk5WqhmrZrGyUImEZwVi-g4qQhpKUV5a3qQAswYCjmja4EhwVWAipSHaOrre8wLXowOjcalZNDtL2KTzIoK1__ePsof4eVJJjUnLVrhy87hxj-TpBG2dukwTnlIUxJ0iYvjxAu6oyevUGXYcrTuyQrzHOvjG6or1tKx5BShO65G4LlOkO5zlDuMsz4p5cTPMP_Q8vA5y0QpuF9q3_U5Kkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051824296</pqid></control><display><type>article</type><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</creator><creatorcontrib>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</creatorcontrib><description>Abstract
Background
Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors.
Methods
We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Results
Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59).
Conclusions
Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</description><identifier>ISSN: 0027-8874</identifier><identifier>ISSN: 1460-2105</identifier><identifier>EISSN: 1460-2105</identifier><identifier>DOI: 10.1093/jnci/djad014</identifier><identifier>PMID: 36688725</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Cancer ; Cancer screening ; Confidence intervals ; Consortia ; Editor's Choice ; Endometrial cancer ; Endometrial Neoplasms - epidemiology ; Endometrial Neoplasms - genetics ; Endometrium ; Epidemiology ; Estimates ; Female ; Genetic factors ; Health risks ; Humans ; Hysterectomy ; Incidence ; Mathematical models ; Medical screening ; Ovarian cancer ; Ovarian Neoplasms - epidemiology ; Population studies ; Post-menopause ; Prediction models ; Public health ; Risk Factors ; ROC Curve ; Uterine cancer</subject><ispartof>JNCI : Journal of the National Cancer Institute, 2023-05, Vol.115 (5), p.552-559</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</citedby><cites>FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</cites><orcidid>0000-0001-6907-0056 ; 0000-0002-4799-1900 ; 0000-0001-6163-200X ; 0000-0002-4234-7999 ; 0000-0003-1251-0836 ; 0000-0001-9871-0809 ; 0000-0002-2079-8705 ; 0000-0002-8008-5096 ; 0000-0002-1539-6090 ; 0000-0002-0711-8314 ; 0000-0003-2755-302X ; 0000-0001-8749-9737 ; 0000-0003-0435-7376 ; 0000-0002-4472-8103 ; 0000-0001-5624-4854 ; 0000-0003-2695-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36688725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Joy</creatorcontrib><creatorcontrib>Kraft, Peter</creatorcontrib><creatorcontrib>Rosner, Bernard A</creatorcontrib><creatorcontrib>Benavente, Yolanda</creatorcontrib><creatorcontrib>Black, Amanda</creatorcontrib><creatorcontrib>Brinton, Louise A</creatorcontrib><creatorcontrib>Chen, Chu</creatorcontrib><creatorcontrib>Clarke, Megan A</creatorcontrib><creatorcontrib>Cook, Linda S</creatorcontrib><creatorcontrib>Costas, Laura</creatorcontrib><creatorcontrib>Dal Maso, Luigino</creatorcontrib><creatorcontrib>Freudenheim, Jo L</creatorcontrib><creatorcontrib>Frias-Gomez, Jon</creatorcontrib><creatorcontrib>Friedenreich, Christine M</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Goodman, Marc T</creatorcontrib><creatorcontrib>Johnson, Lisa</creatorcontrib><creatorcontrib>La Vecchia, Carlo</creatorcontrib><creatorcontrib>Levi, Fabio</creatorcontrib><creatorcontrib>Lissowska, Jolanta</creatorcontrib><creatorcontrib>Lu, Lingeng</creatorcontrib><creatorcontrib>McCann, Susan E</creatorcontrib><creatorcontrib>Moysich, Kirsten B</creatorcontrib><creatorcontrib>Negri, Eva</creatorcontrib><creatorcontrib>O'Connell, Kelli</creatorcontrib><creatorcontrib>Parazzini, Fabio</creatorcontrib><creatorcontrib>Petruzella, Stacey</creatorcontrib><creatorcontrib>Polesel, Jerry</creatorcontrib><creatorcontrib>Ponte, Jeanette</creatorcontrib><creatorcontrib>Rebbeck, Timothy R</creatorcontrib><creatorcontrib>Reynolds, Peggy</creatorcontrib><creatorcontrib>Ricceri, Fulvio</creatorcontrib><creatorcontrib>Risch, Harvey A</creatorcontrib><creatorcontrib>Sacerdote, Carlotta</creatorcontrib><creatorcontrib>Setiawan, Veronica W</creatorcontrib><creatorcontrib>Shu, Xiao-Ou</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Trabert, Britton</creatorcontrib><creatorcontrib>Webb, Penelope M</creatorcontrib><creatorcontrib>Wentzensen, Nicolas</creatorcontrib><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Xu, Wang Hong</creatorcontrib><creatorcontrib>Yang, Hannah P</creatorcontrib><creatorcontrib>Yu, Herbert</creatorcontrib><creatorcontrib>Du, Mengmeng</creatorcontrib><creatorcontrib>De Vivo, Immaculata</creatorcontrib><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><title>JNCI : Journal of the National Cancer Institute</title><addtitle>J Natl Cancer Inst</addtitle><description>Abstract
Background
Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors.
Methods
We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Results
Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59).
Conclusions
Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</description><subject>Cancer</subject><subject>Cancer screening</subject><subject>Confidence intervals</subject><subject>Consortia</subject><subject>Editor's Choice</subject><subject>Endometrial cancer</subject><subject>Endometrial Neoplasms - epidemiology</subject><subject>Endometrial Neoplasms - genetics</subject><subject>Endometrium</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Female</subject><subject>Genetic factors</subject><subject>Health risks</subject><subject>Humans</subject><subject>Hysterectomy</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Medical screening</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - epidemiology</subject><subject>Population studies</subject><subject>Post-menopause</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Uterine cancer</subject><issn>0027-8874</issn><issn>1460-2105</issn><issn>1460-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1LHTEUxYMo9WnduS4DLtpFR5NMMjNxI-VhVRAKpa5DXnKn5jWTTJOZB_73zfuoqAuzSODkdw_33oPQKcHnBIvqYum1vTBLZTBhe2hGWI1LSjDfRzOMaVO2bcMO0VFKS5yPoOwDOqzqOsuUz9DjT5v-FEMEY_Vogy_6YMCloguxAG9CD2O0yhVaeQ3xsjCwAheGHvxYKG-KlXLWqE2l9VnJ9wjRb5R1WfApxNFO_Ud00CmX4GT3HqOH79e_5rfl_Y-bu_m3-1IzxscSjDCk5WqhmrZrGyUImEZwVi-g4qQhpKUV5a3qQAswYCjmja4EhwVWAipSHaOrre8wLXowOjcalZNDtL2KTzIoK1__ePsof4eVJJjUnLVrhy87hxj-TpBG2dukwTnlIUxJ0iYvjxAu6oyevUGXYcrTuyQrzHOvjG6or1tKx5BShO65G4LlOkO5zlDuMsz4p5cTPMP_Q8vA5y0QpuF9q3_U5Kkk</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Shi, Joy</creator><creator>Kraft, Peter</creator><creator>Rosner, Bernard A</creator><creator>Benavente, Yolanda</creator><creator>Black, Amanda</creator><creator>Brinton, Louise A</creator><creator>Chen, Chu</creator><creator>Clarke, Megan A</creator><creator>Cook, Linda S</creator><creator>Costas, Laura</creator><creator>Dal Maso, Luigino</creator><creator>Freudenheim, Jo L</creator><creator>Frias-Gomez, Jon</creator><creator>Friedenreich, Christine M</creator><creator>Garcia-Closas, Montserrat</creator><creator>Goodman, Marc T</creator><creator>Johnson, Lisa</creator><creator>La Vecchia, Carlo</creator><creator>Levi, Fabio</creator><creator>Lissowska, Jolanta</creator><creator>Lu, Lingeng</creator><creator>McCann, Susan E</creator><creator>Moysich, Kirsten B</creator><creator>Negri, Eva</creator><creator>O'Connell, Kelli</creator><creator>Parazzini, Fabio</creator><creator>Petruzella, Stacey</creator><creator>Polesel, Jerry</creator><creator>Ponte, Jeanette</creator><creator>Rebbeck, Timothy R</creator><creator>Reynolds, Peggy</creator><creator>Ricceri, Fulvio</creator><creator>Risch, Harvey A</creator><creator>Sacerdote, Carlotta</creator><creator>Setiawan, Veronica W</creator><creator>Shu, Xiao-Ou</creator><creator>Spurdle, Amanda B</creator><creator>Trabert, Britton</creator><creator>Webb, Penelope M</creator><creator>Wentzensen, Nicolas</creator><creator>Wilkens, Lynne R</creator><creator>Xu, Wang Hong</creator><creator>Yang, Hannah P</creator><creator>Yu, Herbert</creator><creator>Du, Mengmeng</creator><creator>De Vivo, Immaculata</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6907-0056</orcidid><orcidid>https://orcid.org/0000-0002-4799-1900</orcidid><orcidid>https://orcid.org/0000-0001-6163-200X</orcidid><orcidid>https://orcid.org/0000-0002-4234-7999</orcidid><orcidid>https://orcid.org/0000-0003-1251-0836</orcidid><orcidid>https://orcid.org/0000-0001-9871-0809</orcidid><orcidid>https://orcid.org/0000-0002-2079-8705</orcidid><orcidid>https://orcid.org/0000-0002-8008-5096</orcidid><orcidid>https://orcid.org/0000-0002-1539-6090</orcidid><orcidid>https://orcid.org/0000-0002-0711-8314</orcidid><orcidid>https://orcid.org/0000-0003-2755-302X</orcidid><orcidid>https://orcid.org/0000-0001-8749-9737</orcidid><orcidid>https://orcid.org/0000-0003-0435-7376</orcidid><orcidid>https://orcid.org/0000-0002-4472-8103</orcidid><orcidid>https://orcid.org/0000-0001-5624-4854</orcidid><orcidid>https://orcid.org/0000-0003-2695-5799</orcidid></search><sort><creationdate>20230508</creationdate><title>Risk prediction models for endometrial cancer: development and validation in an international consortium</title><author>Shi, Joy ; Kraft, Peter ; Rosner, Bernard A ; Benavente, Yolanda ; Black, Amanda ; Brinton, Louise A ; Chen, Chu ; Clarke, Megan A ; Cook, Linda S ; Costas, Laura ; Dal Maso, Luigino ; Freudenheim, Jo L ; Frias-Gomez, Jon ; Friedenreich, Christine M ; Garcia-Closas, Montserrat ; Goodman, Marc T ; Johnson, Lisa ; La Vecchia, Carlo ; Levi, Fabio ; Lissowska, Jolanta ; Lu, Lingeng ; McCann, Susan E ; Moysich, Kirsten B ; Negri, Eva ; O'Connell, Kelli ; Parazzini, Fabio ; Petruzella, Stacey ; Polesel, Jerry ; Ponte, Jeanette ; Rebbeck, Timothy R ; Reynolds, Peggy ; Ricceri, Fulvio ; Risch, Harvey A ; Sacerdote, Carlotta ; Setiawan, Veronica W ; Shu, Xiao-Ou ; Spurdle, Amanda B ; Trabert, Britton ; Webb, Penelope M ; Wentzensen, Nicolas ; Wilkens, Lynne R ; Xu, Wang Hong ; Yang, Hannah P ; Yu, Herbert ; Du, Mengmeng ; De Vivo, Immaculata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ed9d185aba78f87a91ed79546be351711823258afec9eded2057c395eb0a9e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Cancer screening</topic><topic>Confidence intervals</topic><topic>Consortia</topic><topic>Editor's Choice</topic><topic>Endometrial cancer</topic><topic>Endometrial Neoplasms - epidemiology</topic><topic>Endometrial Neoplasms - genetics</topic><topic>Endometrium</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Female</topic><topic>Genetic factors</topic><topic>Health risks</topic><topic>Humans</topic><topic>Hysterectomy</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Medical screening</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - epidemiology</topic><topic>Population studies</topic><topic>Post-menopause</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Uterine cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Joy</creatorcontrib><creatorcontrib>Kraft, Peter</creatorcontrib><creatorcontrib>Rosner, Bernard A</creatorcontrib><creatorcontrib>Benavente, Yolanda</creatorcontrib><creatorcontrib>Black, Amanda</creatorcontrib><creatorcontrib>Brinton, Louise A</creatorcontrib><creatorcontrib>Chen, Chu</creatorcontrib><creatorcontrib>Clarke, Megan A</creatorcontrib><creatorcontrib>Cook, Linda S</creatorcontrib><creatorcontrib>Costas, Laura</creatorcontrib><creatorcontrib>Dal Maso, Luigino</creatorcontrib><creatorcontrib>Freudenheim, Jo L</creatorcontrib><creatorcontrib>Frias-Gomez, Jon</creatorcontrib><creatorcontrib>Friedenreich, Christine M</creatorcontrib><creatorcontrib>Garcia-Closas, Montserrat</creatorcontrib><creatorcontrib>Goodman, Marc T</creatorcontrib><creatorcontrib>Johnson, Lisa</creatorcontrib><creatorcontrib>La Vecchia, Carlo</creatorcontrib><creatorcontrib>Levi, Fabio</creatorcontrib><creatorcontrib>Lissowska, Jolanta</creatorcontrib><creatorcontrib>Lu, Lingeng</creatorcontrib><creatorcontrib>McCann, Susan E</creatorcontrib><creatorcontrib>Moysich, Kirsten B</creatorcontrib><creatorcontrib>Negri, Eva</creatorcontrib><creatorcontrib>O'Connell, Kelli</creatorcontrib><creatorcontrib>Parazzini, Fabio</creatorcontrib><creatorcontrib>Petruzella, Stacey</creatorcontrib><creatorcontrib>Polesel, Jerry</creatorcontrib><creatorcontrib>Ponte, Jeanette</creatorcontrib><creatorcontrib>Rebbeck, Timothy R</creatorcontrib><creatorcontrib>Reynolds, Peggy</creatorcontrib><creatorcontrib>Ricceri, Fulvio</creatorcontrib><creatorcontrib>Risch, Harvey A</creatorcontrib><creatorcontrib>Sacerdote, Carlotta</creatorcontrib><creatorcontrib>Setiawan, Veronica W</creatorcontrib><creatorcontrib>Shu, Xiao-Ou</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Trabert, Britton</creatorcontrib><creatorcontrib>Webb, Penelope M</creatorcontrib><creatorcontrib>Wentzensen, Nicolas</creatorcontrib><creatorcontrib>Wilkens, Lynne R</creatorcontrib><creatorcontrib>Xu, Wang Hong</creatorcontrib><creatorcontrib>Yang, Hannah P</creatorcontrib><creatorcontrib>Yu, Herbert</creatorcontrib><creatorcontrib>Du, Mengmeng</creatorcontrib><creatorcontrib>De Vivo, Immaculata</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JNCI : Journal of the National Cancer Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Joy</au><au>Kraft, Peter</au><au>Rosner, Bernard A</au><au>Benavente, Yolanda</au><au>Black, Amanda</au><au>Brinton, Louise A</au><au>Chen, Chu</au><au>Clarke, Megan A</au><au>Cook, Linda S</au><au>Costas, Laura</au><au>Dal Maso, Luigino</au><au>Freudenheim, Jo L</au><au>Frias-Gomez, Jon</au><au>Friedenreich, Christine M</au><au>Garcia-Closas, Montserrat</au><au>Goodman, Marc T</au><au>Johnson, Lisa</au><au>La Vecchia, Carlo</au><au>Levi, Fabio</au><au>Lissowska, Jolanta</au><au>Lu, Lingeng</au><au>McCann, Susan E</au><au>Moysich, Kirsten B</au><au>Negri, Eva</au><au>O'Connell, Kelli</au><au>Parazzini, Fabio</au><au>Petruzella, Stacey</au><au>Polesel, Jerry</au><au>Ponte, Jeanette</au><au>Rebbeck, Timothy R</au><au>Reynolds, Peggy</au><au>Ricceri, Fulvio</au><au>Risch, Harvey A</au><au>Sacerdote, Carlotta</au><au>Setiawan, Veronica W</au><au>Shu, Xiao-Ou</au><au>Spurdle, Amanda B</au><au>Trabert, Britton</au><au>Webb, Penelope M</au><au>Wentzensen, Nicolas</au><au>Wilkens, Lynne R</au><au>Xu, Wang Hong</au><au>Yang, Hannah P</au><au>Yu, Herbert</au><au>Du, Mengmeng</au><au>De Vivo, Immaculata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk prediction models for endometrial cancer: development and validation in an international consortium</atitle><jtitle>JNCI : Journal of the National Cancer Institute</jtitle><addtitle>J Natl Cancer Inst</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>115</volume><issue>5</issue><spage>552</spage><epage>559</epage><pages>552-559</pages><issn>0027-8874</issn><issn>1460-2105</issn><eissn>1460-2105</eissn><abstract>Abstract
Background
Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors.
Methods
We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.
Results
Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59).
Conclusions
Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36688725</pmid><doi>10.1093/jnci/djad014</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6907-0056</orcidid><orcidid>https://orcid.org/0000-0002-4799-1900</orcidid><orcidid>https://orcid.org/0000-0001-6163-200X</orcidid><orcidid>https://orcid.org/0000-0002-4234-7999</orcidid><orcidid>https://orcid.org/0000-0003-1251-0836</orcidid><orcidid>https://orcid.org/0000-0001-9871-0809</orcidid><orcidid>https://orcid.org/0000-0002-2079-8705</orcidid><orcidid>https://orcid.org/0000-0002-8008-5096</orcidid><orcidid>https://orcid.org/0000-0002-1539-6090</orcidid><orcidid>https://orcid.org/0000-0002-0711-8314</orcidid><orcidid>https://orcid.org/0000-0003-2755-302X</orcidid><orcidid>https://orcid.org/0000-0001-8749-9737</orcidid><orcidid>https://orcid.org/0000-0003-0435-7376</orcidid><orcidid>https://orcid.org/0000-0002-4472-8103</orcidid><orcidid>https://orcid.org/0000-0001-5624-4854</orcidid><orcidid>https://orcid.org/0000-0003-2695-5799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8874 |
ispartof | JNCI : Journal of the National Cancer Institute, 2023-05, Vol.115 (5), p.552-559 |
issn | 0027-8874 1460-2105 1460-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10165481 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Cancer Cancer screening Confidence intervals Consortia Editor's Choice Endometrial cancer Endometrial Neoplasms - epidemiology Endometrial Neoplasms - genetics Endometrium Epidemiology Estimates Female Genetic factors Health risks Humans Hysterectomy Incidence Mathematical models Medical screening Ovarian cancer Ovarian Neoplasms - epidemiology Population studies Post-menopause Prediction models Public health Risk Factors ROC Curve Uterine cancer |
title | Risk prediction models for endometrial cancer: development and validation in an international consortium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20prediction%20models%20for%20endometrial%20cancer:%20development%20and%20validation%20in%20an%20international%20consortium&rft.jtitle=JNCI%20:%20Journal%20of%20the%20National%20Cancer%20Institute&rft.au=Shi,%20Joy&rft.date=2023-05-08&rft.volume=115&rft.issue=5&rft.spage=552&rft.epage=559&rft.pages=552-559&rft.issn=0027-8874&rft.eissn=1460-2105&rft_id=info:doi/10.1093/jnci/djad014&rft_dat=%3Cproquest_pubme%3E2768811596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051824296&rft_id=info:pmid/36688725&rft_oup_id=10.1093/jnci/djad014&rfr_iscdi=true |