Goldilocks and RNA: where Mg2+ concentration is just right
Abstract Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a ‘Goldilocks landscape’, with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use sim...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-05, Vol.51 (8), p.3529-3539 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3539 |
---|---|
container_issue | 8 |
container_start_page | 3529 |
container_title | Nucleic acids research |
container_volume | 51 |
creator | Guth-Metzler, Rebecca Mohamed, Ahmad Mohyeldin Cowan, Elizabeth T Henning, Ashleigh Ito, Chieri Frenkel-Pinter, Moran Wartell, Roger M Glass, Jennifer B Williams, Loren Dean |
description | Abstract
Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a ‘Goldilocks landscape’, with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4–P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.
Graphical Abstract
Graphical Abstract
Too little Mg2+ accelerates RNA cleavage by minimizing folding. Too much Mg2+ accelerates RNA cleavage by over-riding protection. The in-between Goldilocks peak of Mg2+ is just right. |
doi_str_mv | 10.1093/nar/gkad124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10164553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad124</oup_id><sourcerecordid>2792497124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-dd2a561b55fffd937bba65485d1ec44baa80fd855cc070159f0d2363f5e629f93</originalsourceid><addsrcrecordid>eNp9kMtKw0AUQAdRbH2s3EtWIkh03sm4kVK0ClVBdD1M5tGmTTN1JlH8eyOpohtXd3EP514OAEcIniMoyEWtwsVsqQzCdAsMEeE4pYLjbTCEBLIUQZoPwF6MCwgRRYzuggHhIs9yDofgcuIrU1ZeL2OiapM8PYwuk_e5DTa5n-GzRPta27oJqil9nZQxWbSxSUI5mzcHYMepKtrDzdwHLzfXz-PbdPo4uRuPpqmmiDSpMVgxjgrGnHNGkKwoFGc0ZwZZTWmhVA6dyRnTGmYQMeGgwYQTxyzHwgmyD65677otVtb071RyHcqVCh_Sq1L-3dTlXM78m0QQccoY6QynG0Pwr62NjVyVUduqUrX1bZQ4E5iKrAvYoWc9qoOPMVj3cwdB-ZVbdrnlJndHH_9-7Yf97tsBJz3g2_W_pk-fFolD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792497124</pqid></control><display><type>article</type><title>Goldilocks and RNA: where Mg2+ concentration is just right</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Guth-Metzler, Rebecca ; Mohamed, Ahmad Mohyeldin ; Cowan, Elizabeth T ; Henning, Ashleigh ; Ito, Chieri ; Frenkel-Pinter, Moran ; Wartell, Roger M ; Glass, Jennifer B ; Williams, Loren Dean</creator><creatorcontrib>Guth-Metzler, Rebecca ; Mohamed, Ahmad Mohyeldin ; Cowan, Elizabeth T ; Henning, Ashleigh ; Ito, Chieri ; Frenkel-Pinter, Moran ; Wartell, Roger M ; Glass, Jennifer B ; Williams, Loren Dean</creatorcontrib><description>Abstract
Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a ‘Goldilocks landscape’, with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4–P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.
Graphical Abstract
Graphical Abstract
Too little Mg2+ accelerates RNA cleavage by minimizing folding. Too much Mg2+ accelerates RNA cleavage by over-riding protection. The in-between Goldilocks peak of Mg2+ is just right.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad124</identifier><identifier>PMID: 36987860</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Base Sequence ; Chemical Biology and Nucleic Acid Chemistry ; Kinetics ; Magnesium - chemistry ; Nucleic Acid Conformation ; RNA - chemistry ; RNA, Catalytic - chemistry</subject><ispartof>Nucleic acids research, 2023-05, Vol.51 (8), p.3529-3539</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-dd2a561b55fffd937bba65485d1ec44baa80fd855cc070159f0d2363f5e629f93</citedby><cites>FETCH-LOGICAL-c413t-dd2a561b55fffd937bba65485d1ec44baa80fd855cc070159f0d2363f5e629f93</cites><orcidid>0000-0003-3220-1694 ; 0000-0003-1455-4752 ; 0000-0003-0775-2486 ; 0000-0002-6075-5320 ; 0000-0001-7235-5845 ; 0000-0002-6639-4423 ; 0000-0002-1198-7707 ; 0000-0002-7215-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,1601,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36987860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guth-Metzler, Rebecca</creatorcontrib><creatorcontrib>Mohamed, Ahmad Mohyeldin</creatorcontrib><creatorcontrib>Cowan, Elizabeth T</creatorcontrib><creatorcontrib>Henning, Ashleigh</creatorcontrib><creatorcontrib>Ito, Chieri</creatorcontrib><creatorcontrib>Frenkel-Pinter, Moran</creatorcontrib><creatorcontrib>Wartell, Roger M</creatorcontrib><creatorcontrib>Glass, Jennifer B</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><title>Goldilocks and RNA: where Mg2+ concentration is just right</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a ‘Goldilocks landscape’, with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4–P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.
Graphical Abstract
Graphical Abstract
Too little Mg2+ accelerates RNA cleavage by minimizing folding. Too much Mg2+ accelerates RNA cleavage by over-riding protection. The in-between Goldilocks peak of Mg2+ is just right.</description><subject>Base Sequence</subject><subject>Chemical Biology and Nucleic Acid Chemistry</subject><subject>Kinetics</subject><subject>Magnesium - chemistry</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - chemistry</subject><subject>RNA, Catalytic - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMtKw0AUQAdRbH2s3EtWIkh03sm4kVK0ClVBdD1M5tGmTTN1JlH8eyOpohtXd3EP514OAEcIniMoyEWtwsVsqQzCdAsMEeE4pYLjbTCEBLIUQZoPwF6MCwgRRYzuggHhIs9yDofgcuIrU1ZeL2OiapM8PYwuk_e5DTa5n-GzRPta27oJqil9nZQxWbSxSUI5mzcHYMepKtrDzdwHLzfXz-PbdPo4uRuPpqmmiDSpMVgxjgrGnHNGkKwoFGc0ZwZZTWmhVA6dyRnTGmYQMeGgwYQTxyzHwgmyD65677otVtb071RyHcqVCh_Sq1L-3dTlXM78m0QQccoY6QynG0Pwr62NjVyVUduqUrX1bZQ4E5iKrAvYoWc9qoOPMVj3cwdB-ZVbdrnlJndHH_9-7Yf97tsBJz3g2_W_pk-fFolD</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Guth-Metzler, Rebecca</creator><creator>Mohamed, Ahmad Mohyeldin</creator><creator>Cowan, Elizabeth T</creator><creator>Henning, Ashleigh</creator><creator>Ito, Chieri</creator><creator>Frenkel-Pinter, Moran</creator><creator>Wartell, Roger M</creator><creator>Glass, Jennifer B</creator><creator>Williams, Loren Dean</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3220-1694</orcidid><orcidid>https://orcid.org/0000-0003-1455-4752</orcidid><orcidid>https://orcid.org/0000-0003-0775-2486</orcidid><orcidid>https://orcid.org/0000-0002-6075-5320</orcidid><orcidid>https://orcid.org/0000-0001-7235-5845</orcidid><orcidid>https://orcid.org/0000-0002-6639-4423</orcidid><orcidid>https://orcid.org/0000-0002-1198-7707</orcidid><orcidid>https://orcid.org/0000-0002-7215-4194</orcidid></search><sort><creationdate>20230508</creationdate><title>Goldilocks and RNA: where Mg2+ concentration is just right</title><author>Guth-Metzler, Rebecca ; Mohamed, Ahmad Mohyeldin ; Cowan, Elizabeth T ; Henning, Ashleigh ; Ito, Chieri ; Frenkel-Pinter, Moran ; Wartell, Roger M ; Glass, Jennifer B ; Williams, Loren Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-dd2a561b55fffd937bba65485d1ec44baa80fd855cc070159f0d2363f5e629f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base Sequence</topic><topic>Chemical Biology and Nucleic Acid Chemistry</topic><topic>Kinetics</topic><topic>Magnesium - chemistry</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - chemistry</topic><topic>RNA, Catalytic - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guth-Metzler, Rebecca</creatorcontrib><creatorcontrib>Mohamed, Ahmad Mohyeldin</creatorcontrib><creatorcontrib>Cowan, Elizabeth T</creatorcontrib><creatorcontrib>Henning, Ashleigh</creatorcontrib><creatorcontrib>Ito, Chieri</creatorcontrib><creatorcontrib>Frenkel-Pinter, Moran</creatorcontrib><creatorcontrib>Wartell, Roger M</creatorcontrib><creatorcontrib>Glass, Jennifer B</creatorcontrib><creatorcontrib>Williams, Loren Dean</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guth-Metzler, Rebecca</au><au>Mohamed, Ahmad Mohyeldin</au><au>Cowan, Elizabeth T</au><au>Henning, Ashleigh</au><au>Ito, Chieri</au><au>Frenkel-Pinter, Moran</au><au>Wartell, Roger M</au><au>Glass, Jennifer B</au><au>Williams, Loren Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Goldilocks and RNA: where Mg2+ concentration is just right</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>51</volume><issue>8</issue><spage>3529</spage><epage>3539</epage><pages>3529-3539</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a ‘Goldilocks landscape’, with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4–P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.
Graphical Abstract
Graphical Abstract
Too little Mg2+ accelerates RNA cleavage by minimizing folding. Too much Mg2+ accelerates RNA cleavage by over-riding protection. The in-between Goldilocks peak of Mg2+ is just right.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36987860</pmid><doi>10.1093/nar/gkad124</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3220-1694</orcidid><orcidid>https://orcid.org/0000-0003-1455-4752</orcidid><orcidid>https://orcid.org/0000-0003-0775-2486</orcidid><orcidid>https://orcid.org/0000-0002-6075-5320</orcidid><orcidid>https://orcid.org/0000-0001-7235-5845</orcidid><orcidid>https://orcid.org/0000-0002-6639-4423</orcidid><orcidid>https://orcid.org/0000-0002-1198-7707</orcidid><orcidid>https://orcid.org/0000-0002-7215-4194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2023-05, Vol.51 (8), p.3529-3539 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10164553 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Base Sequence Chemical Biology and Nucleic Acid Chemistry Kinetics Magnesium - chemistry Nucleic Acid Conformation RNA - chemistry RNA, Catalytic - chemistry |
title | Goldilocks and RNA: where Mg2+ concentration is just right |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Goldilocks%20and%20RNA:%20where%20Mg2+%20concentration%20is%20just%20right&rft.jtitle=Nucleic%20acids%20research&rft.au=Guth-Metzler,%20Rebecca&rft.date=2023-05-08&rft.volume=51&rft.issue=8&rft.spage=3529&rft.epage=3539&rft.pages=3529-3539&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad124&rft_dat=%3Cproquest_pubme%3E2792497124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792497124&rft_id=info:pmid/36987860&rft_oup_id=10.1093/nar/gkad124&rfr_iscdi=true |