Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases

In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-05, Vol.62 (20), p.e202210254-n/a
Hauptverfasser: Shende, Vikram V., Harris, Natalia R., Sanders, Jacob N., Newmister, Sean A., Khatri, Yogan, Movassaghi, Mohammad, Houk, Kendall N., Sherman, David H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e202210254
container_title Angewandte Chemie International Edition
container_volume 62
creator Shende, Vikram V.
Harris, Natalia R.
Sanders, Jacob N.
Newmister, Sean A.
Khatri, Yogan
Movassaghi, Mohammad
Houk, Kendall N.
Sherman, David H.
description In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic. The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.
doi_str_mv 10.1002/anie.202210254
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808469879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</originalsourceid><addsrcrecordid>eNqFkUtvEzEURkcIREvbLUtkiU03k_ox48cKVWlaKhVY0L3lsW9Slxk72DNFQf3xOEpJgQ0rW_a5R_fTV1VvCZ4RjOmZCR5mFFNKMG2bF9UhaSmpmRDsZbk3jNVCtuSgepPzfeGlxPx1dcA4L9NMHVaPn2IPdupNQhebYAZvM_rqh_Iw-hgyupq8AzS_8wMks4IA2WdkgkOLsPIBIIFD8xjGFHsUlwWEIWYoytE_-HGDfEAX_huMce3XxfCzzJSHrSxDPq5eLU2f4eTpPKpuLxe384_1zZer6_n5TW0brpqasSW1zEgiTSdZh61hXLrOCUOc5MpZ41rRdqy1EowrwXinuO2IFZgJY9hR9WGnXU_dAM5CWdf0ep38YNJGR-P13z_B3-lVfNAEk1YpyYrh9MmQ4vcJ8qgHny30vQkQp6yp4ETJhlFc0Pf_oPdxSqHE01RiWQJJoQo121E2xZwTLPfbEKy3xeptsXpfbBl492eGPf67yQKoHfDD97D5j06ff75ePMt_AUXHs0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808469879</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</creator><creatorcontrib>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</creatorcontrib><description>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic. The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202210254</identifier><identifier>PMID: 36610039</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocatalysts ; Biosynthesis ; Bonding ; Crystal structure ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochromes P450 ; Diketopiperazine ; Diketopiperazines - chemistry ; Divergence ; Enzyme Mechanisms ; Isomerism ; Molecular Conformation ; Molecular Dynamics ; Molecular Dynamics Simulation ; Monomers ; Natural Products ; Simulation ; Substrates ; Tryptophan</subject><ispartof>Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202210254-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</citedby><cites>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</cites><orcidid>0000-0003-3559-5692 ; 0000-0002-9623-7779 ; 0000-0002-2432-7679 ; 0000-0001-7583-7065 ; 0000-0001-8334-3647 ; 0000-0001-8396-6297 ; 0000-0002-8387-5261 ; 0000-0002-2196-4234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202210254$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202210254$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36610039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Harris, Natalia R.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Khatri, Yogan</creatorcontrib><creatorcontrib>Movassaghi, Mohammad</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic. The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</description><subject>Biocatalysts</subject><subject>Biosynthesis</subject><subject>Bonding</subject><subject>Crystal structure</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochromes P450</subject><subject>Diketopiperazine</subject><subject>Diketopiperazines - chemistry</subject><subject>Divergence</subject><subject>Enzyme Mechanisms</subject><subject>Isomerism</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Natural Products</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Tryptophan</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEURkcIREvbLUtkiU03k_ox48cKVWlaKhVY0L3lsW9Slxk72DNFQf3xOEpJgQ0rW_a5R_fTV1VvCZ4RjOmZCR5mFFNKMG2bF9UhaSmpmRDsZbk3jNVCtuSgepPzfeGlxPx1dcA4L9NMHVaPn2IPdupNQhebYAZvM_rqh_Iw-hgyupq8AzS_8wMks4IA2WdkgkOLsPIBIIFD8xjGFHsUlwWEIWYoytE_-HGDfEAX_huMce3XxfCzzJSHrSxDPq5eLU2f4eTpPKpuLxe384_1zZer6_n5TW0brpqasSW1zEgiTSdZh61hXLrOCUOc5MpZ41rRdqy1EowrwXinuO2IFZgJY9hR9WGnXU_dAM5CWdf0ep38YNJGR-P13z_B3-lVfNAEk1YpyYrh9MmQ4vcJ8qgHny30vQkQp6yp4ETJhlFc0Pf_oPdxSqHE01RiWQJJoQo121E2xZwTLPfbEKy3xeptsXpfbBl492eGPf67yQKoHfDD97D5j06ff75ePMt_AUXHs0Q</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Shende, Vikram V.</creator><creator>Harris, Natalia R.</creator><creator>Sanders, Jacob N.</creator><creator>Newmister, Sean A.</creator><creator>Khatri, Yogan</creator><creator>Movassaghi, Mohammad</creator><creator>Houk, Kendall N.</creator><creator>Sherman, David H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3559-5692</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000-0002-2432-7679</orcidid><orcidid>https://orcid.org/0000-0001-7583-7065</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0001-8396-6297</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0002-2196-4234</orcidid></search><sort><creationdate>20230508</creationdate><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><author>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocatalysts</topic><topic>Biosynthesis</topic><topic>Bonding</topic><topic>Crystal structure</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochromes P450</topic><topic>Diketopiperazine</topic><topic>Diketopiperazines - chemistry</topic><topic>Divergence</topic><topic>Enzyme Mechanisms</topic><topic>Isomerism</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Natural Products</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Harris, Natalia R.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Khatri, Yogan</creatorcontrib><creatorcontrib>Movassaghi, Mohammad</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shende, Vikram V.</au><au>Harris, Natalia R.</au><au>Sanders, Jacob N.</au><au>Newmister, Sean A.</au><au>Khatri, Yogan</au><au>Movassaghi, Mohammad</au><au>Houk, Kendall N.</au><au>Sherman, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>62</volume><issue>20</issue><spage>e202210254</spage><epage>n/a</epage><pages>e202210254-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic. The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36610039</pmid><doi>10.1002/anie.202210254</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3559-5692</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000-0002-2432-7679</orcidid><orcidid>https://orcid.org/0000-0001-7583-7065</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0001-8396-6297</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0002-2196-4234</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202210254-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159983
source MEDLINE; Wiley Online Library All Journals
subjects Biocatalysts
Biosynthesis
Bonding
Crystal structure
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochromes P450
Diketopiperazine
Diketopiperazines - chemistry
Divergence
Enzyme Mechanisms
Isomerism
Molecular Conformation
Molecular Dynamics
Molecular Dynamics Simulation
Monomers
Natural Products
Simulation
Substrates
Tryptophan
title Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20Guide%20Chimeragenesis%20and%20Engineered%20Control%20of%20Chemoselectivity%20in%20Diketopiperazine%20Dimerases&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Shende,%20Vikram%20V.&rft.date=2023-05-08&rft.volume=62&rft.issue=20&rft.spage=e202210254&rft.epage=n/a&rft.pages=e202210254-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202210254&rft_dat=%3Cproquest_pubme%3E2808469879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808469879&rft_id=info:pmid/36610039&rfr_iscdi=true