Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases
In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal str...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-05, Vol.62 (20), p.e202210254-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | e202210254 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Shende, Vikram V. Harris, Natalia R. Sanders, Jacob N. Newmister, Sean A. Khatri, Yogan Movassaghi, Mohammad Houk, Kendall N. Sherman, David H. |
description | In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases. |
doi_str_mv | 10.1002/anie.202210254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808469879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</originalsourceid><addsrcrecordid>eNqFkUtvEzEURkcIREvbLUtkiU03k_ox48cKVWlaKhVY0L3lsW9Slxk72DNFQf3xOEpJgQ0rW_a5R_fTV1VvCZ4RjOmZCR5mFFNKMG2bF9UhaSmpmRDsZbk3jNVCtuSgepPzfeGlxPx1dcA4L9NMHVaPn2IPdupNQhebYAZvM_rqh_Iw-hgyupq8AzS_8wMks4IA2WdkgkOLsPIBIIFD8xjGFHsUlwWEIWYoytE_-HGDfEAX_huMce3XxfCzzJSHrSxDPq5eLU2f4eTpPKpuLxe384_1zZer6_n5TW0brpqasSW1zEgiTSdZh61hXLrOCUOc5MpZ41rRdqy1EowrwXinuO2IFZgJY9hR9WGnXU_dAM5CWdf0ep38YNJGR-P13z_B3-lVfNAEk1YpyYrh9MmQ4vcJ8qgHny30vQkQp6yp4ETJhlFc0Pf_oPdxSqHE01RiWQJJoQo121E2xZwTLPfbEKy3xeptsXpfbBl492eGPf67yQKoHfDD97D5j06ff75ePMt_AUXHs0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808469879</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</creator><creatorcontrib>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</creatorcontrib><description>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202210254</identifier><identifier>PMID: 36610039</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocatalysts ; Biosynthesis ; Bonding ; Crystal structure ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochromes P450 ; Diketopiperazine ; Diketopiperazines - chemistry ; Divergence ; Enzyme Mechanisms ; Isomerism ; Molecular Conformation ; Molecular Dynamics ; Molecular Dynamics Simulation ; Monomers ; Natural Products ; Simulation ; Substrates ; Tryptophan</subject><ispartof>Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202210254-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</citedby><cites>FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</cites><orcidid>0000-0003-3559-5692 ; 0000-0002-9623-7779 ; 0000-0002-2432-7679 ; 0000-0001-7583-7065 ; 0000-0001-8334-3647 ; 0000-0001-8396-6297 ; 0000-0002-8387-5261 ; 0000-0002-2196-4234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202210254$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202210254$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36610039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Harris, Natalia R.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Khatri, Yogan</creatorcontrib><creatorcontrib>Movassaghi, Mohammad</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</description><subject>Biocatalysts</subject><subject>Biosynthesis</subject><subject>Bonding</subject><subject>Crystal structure</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochromes P450</subject><subject>Diketopiperazine</subject><subject>Diketopiperazines - chemistry</subject><subject>Divergence</subject><subject>Enzyme Mechanisms</subject><subject>Isomerism</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Natural Products</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Tryptophan</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEURkcIREvbLUtkiU03k_ox48cKVWlaKhVY0L3lsW9Slxk72DNFQf3xOEpJgQ0rW_a5R_fTV1VvCZ4RjOmZCR5mFFNKMG2bF9UhaSmpmRDsZbk3jNVCtuSgepPzfeGlxPx1dcA4L9NMHVaPn2IPdupNQhebYAZvM_rqh_Iw-hgyupq8AzS_8wMks4IA2WdkgkOLsPIBIIFD8xjGFHsUlwWEIWYoytE_-HGDfEAX_huMce3XxfCzzJSHrSxDPq5eLU2f4eTpPKpuLxe384_1zZer6_n5TW0brpqasSW1zEgiTSdZh61hXLrOCUOc5MpZ41rRdqy1EowrwXinuO2IFZgJY9hR9WGnXU_dAM5CWdf0ep38YNJGR-P13z_B3-lVfNAEk1YpyYrh9MmQ4vcJ8qgHny30vQkQp6yp4ETJhlFc0Pf_oPdxSqHE01RiWQJJoQo121E2xZwTLPfbEKy3xeptsXpfbBl492eGPf67yQKoHfDD97D5j06ff75ePMt_AUXHs0Q</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Shende, Vikram V.</creator><creator>Harris, Natalia R.</creator><creator>Sanders, Jacob N.</creator><creator>Newmister, Sean A.</creator><creator>Khatri, Yogan</creator><creator>Movassaghi, Mohammad</creator><creator>Houk, Kendall N.</creator><creator>Sherman, David H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3559-5692</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000-0002-2432-7679</orcidid><orcidid>https://orcid.org/0000-0001-7583-7065</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0001-8396-6297</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0002-2196-4234</orcidid></search><sort><creationdate>20230508</creationdate><title>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</title><author>Shende, Vikram V. ; Harris, Natalia R. ; Sanders, Jacob N. ; Newmister, Sean A. ; Khatri, Yogan ; Movassaghi, Mohammad ; Houk, Kendall N. ; Sherman, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-33f2c3a818ab83b0ca368dbd7a1d869dcad575b35c8ead1006b96cb1c7037aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocatalysts</topic><topic>Biosynthesis</topic><topic>Bonding</topic><topic>Crystal structure</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochromes P450</topic><topic>Diketopiperazine</topic><topic>Diketopiperazines - chemistry</topic><topic>Divergence</topic><topic>Enzyme Mechanisms</topic><topic>Isomerism</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Natural Products</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shende, Vikram V.</creatorcontrib><creatorcontrib>Harris, Natalia R.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Newmister, Sean A.</creatorcontrib><creatorcontrib>Khatri, Yogan</creatorcontrib><creatorcontrib>Movassaghi, Mohammad</creatorcontrib><creatorcontrib>Houk, Kendall N.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shende, Vikram V.</au><au>Harris, Natalia R.</au><au>Sanders, Jacob N.</au><au>Newmister, Sean A.</au><au>Khatri, Yogan</au><au>Movassaghi, Mohammad</au><au>Houk, Kendall N.</au><au>Sherman, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-05-08</date><risdate>2023</risdate><volume>62</volume><issue>20</issue><spage>e202210254</spage><epage>n/a</epage><pages>e202210254-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
The high‐resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36610039</pmid><doi>10.1002/anie.202210254</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3559-5692</orcidid><orcidid>https://orcid.org/0000-0002-9623-7779</orcidid><orcidid>https://orcid.org/0000-0002-2432-7679</orcidid><orcidid>https://orcid.org/0000-0001-7583-7065</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid><orcidid>https://orcid.org/0000-0001-8396-6297</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0002-2196-4234</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-05, Vol.62 (20), p.e202210254-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159983 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Biocatalysts Biosynthesis Bonding Crystal structure Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochromes P450 Diketopiperazine Diketopiperazines - chemistry Divergence Enzyme Mechanisms Isomerism Molecular Conformation Molecular Dynamics Molecular Dynamics Simulation Monomers Natural Products Simulation Substrates Tryptophan |
title | Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20Guide%20Chimeragenesis%20and%20Engineered%20Control%20of%20Chemoselectivity%20in%20Diketopiperazine%20Dimerases&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Shende,%20Vikram%20V.&rft.date=2023-05-08&rft.volume=62&rft.issue=20&rft.spage=e202210254&rft.epage=n/a&rft.pages=e202210254-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202210254&rft_dat=%3Cproquest_pubme%3E2808469879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808469879&rft_id=info:pmid/36610039&rfr_iscdi=true |