An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases

The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-10, Vol.610 (7931), p.302-307
Hauptverfasser: Fu, Haigen, Cao, Jingzhe, Qiao, Tianzhang, Qi, Yuyin, Charnock, Simon J., Garfinkle, Samuel, Hyster, Todd K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 7931
container_start_page 302
container_title Nature (London)
container_volume 610
creator Fu, Haigen
Cao, Jingzhe
Qiao, Tianzhang
Qi, Yuyin
Charnock, Simon J.
Garfinkle, Samuel
Hyster, Todd K.
description The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C sp 3 –C sp 3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges. A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.
doi_str_mv 10.1038/s41586-022-05167-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10157439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702187598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</originalsourceid><addsrcrecordid>eNp9kb9uFDEQxi1ERI7AC1CtRENjGP_3ViiKQoIUkSapLZ93fNlo_2HvIqW7d6CB17snwZeLQFDQzBTz-z7NzEfIGwbvGQj7IUumrKbAOQXFtKHsGVkxaTSV2prnZAXALQUr9DF5mfM9QMGMfEGOhaoVN0ysyJfTofL5oe9xTm2o8iR22--lViGNOVPsMMxpnO7aDqswLlPXDptqyfu62_7AAXfbnzRhs4TZZ8yvyFH0XcbXT_2E3H46vzm7pFfXF5_PTq9oEJbPtBEx6iAF4xZry7XwEhQEo63XteQhrm1tVYzryLVcRwFK-cgBQuO5wboRJ-TjwXda1j02AYc5-c5Nqe19enCjb93fk6G9c5vxm2PAlJGiLg7vnhzS-HXBPLu-zQG7zg84LtlxA5xZo2pb0Lf_oPfjkoZyX6G4EgoUZ4XiB-rxcwnj720YuH1e7pCXK3m5x7zcXiQOolzgYYPpj_V_VL8Az7GaNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725350521</pqid></control><display><type>article</type><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</creator><creatorcontrib>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</creatorcontrib><description>The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C sp 3 –C sp 3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges. A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05167-1</identifier><identifier>PMID: 35952713</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/638/77/603 ; 639/638/77/890 ; 82 ; Asymmetry ; Catalysis ; Charge transfer ; Couplings ; Enantiomers ; Enzymes ; Flavin ; Halides ; Humanities and Social Sciences ; Hydrogen ; Hydrogen atoms ; multidisciplinary ; Photoexcitation ; Proteins ; Reductases ; Science ; Science (multidisciplinary) ; Selectivity ; Stereoselectivity</subject><ispartof>Nature (London), 2022-10, Vol.610 (7931), p.302-307</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Oct 13, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</citedby><cites>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</cites><orcidid>0000-0003-4437-7419 ; 0000-0003-3560-355X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05167-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05167-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fu, Haigen</creatorcontrib><creatorcontrib>Cao, Jingzhe</creatorcontrib><creatorcontrib>Qiao, Tianzhang</creatorcontrib><creatorcontrib>Qi, Yuyin</creatorcontrib><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Garfinkle, Samuel</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C sp 3 –C sp 3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges. A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</description><subject>140/131</subject><subject>639/638/77/603</subject><subject>639/638/77/890</subject><subject>82</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Charge transfer</subject><subject>Couplings</subject><subject>Enantiomers</subject><subject>Enzymes</subject><subject>Flavin</subject><subject>Halides</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>multidisciplinary</subject><subject>Photoexcitation</subject><subject>Proteins</subject><subject>Reductases</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Stereoselectivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kb9uFDEQxi1ERI7AC1CtRENjGP_3ViiKQoIUkSapLZ93fNlo_2HvIqW7d6CB17snwZeLQFDQzBTz-z7NzEfIGwbvGQj7IUumrKbAOQXFtKHsGVkxaTSV2prnZAXALQUr9DF5mfM9QMGMfEGOhaoVN0ysyJfTofL5oe9xTm2o8iR22--lViGNOVPsMMxpnO7aDqswLlPXDptqyfu62_7AAXfbnzRhs4TZZ8yvyFH0XcbXT_2E3H46vzm7pFfXF5_PTq9oEJbPtBEx6iAF4xZry7XwEhQEo63XteQhrm1tVYzryLVcRwFK-cgBQuO5wboRJ-TjwXda1j02AYc5-c5Nqe19enCjb93fk6G9c5vxm2PAlJGiLg7vnhzS-HXBPLu-zQG7zg84LtlxA5xZo2pb0Lf_oPfjkoZyX6G4EgoUZ4XiB-rxcwnj720YuH1e7pCXK3m5x7zcXiQOolzgYYPpj_V_VL8Az7GaNw</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Fu, Haigen</creator><creator>Cao, Jingzhe</creator><creator>Qiao, Tianzhang</creator><creator>Qi, Yuyin</creator><creator>Charnock, Simon J.</creator><creator>Garfinkle, Samuel</creator><creator>Hyster, Todd K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4437-7419</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid></search><sort><creationdate>20221013</creationdate><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><author>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/131</topic><topic>639/638/77/603</topic><topic>639/638/77/890</topic><topic>82</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Charge transfer</topic><topic>Couplings</topic><topic>Enantiomers</topic><topic>Enzymes</topic><topic>Flavin</topic><topic>Halides</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>multidisciplinary</topic><topic>Photoexcitation</topic><topic>Proteins</topic><topic>Reductases</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Stereoselectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haigen</creatorcontrib><creatorcontrib>Cao, Jingzhe</creatorcontrib><creatorcontrib>Qiao, Tianzhang</creatorcontrib><creatorcontrib>Qi, Yuyin</creatorcontrib><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Garfinkle, Samuel</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haigen</au><au>Cao, Jingzhe</au><au>Qiao, Tianzhang</au><au>Qi, Yuyin</au><au>Charnock, Simon J.</au><au>Garfinkle, Samuel</au><au>Hyster, Todd K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-10-13</date><risdate>2022</risdate><volume>610</volume><issue>7931</issue><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C sp 3 –C sp 3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges. A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35952713</pmid><doi>10.1038/s41586-022-05167-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4437-7419</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-10, Vol.610 (7931), p.302-307
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10157439
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/131
639/638/77/603
639/638/77/890
82
Asymmetry
Catalysis
Charge transfer
Couplings
Enantiomers
Enzymes
Flavin
Halides
Humanities and Social Sciences
Hydrogen
Hydrogen atoms
multidisciplinary
Photoexcitation
Proteins
Reductases
Science
Science (multidisciplinary)
Selectivity
Stereoselectivity
title An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymmetric%20sp3%E2%80%93sp3%20cross-electrophile%20coupling%20using%20%E2%80%98ene%E2%80%99-reductases&rft.jtitle=Nature%20(London)&rft.au=Fu,%20Haigen&rft.date=2022-10-13&rft.volume=610&rft.issue=7931&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05167-1&rft_dat=%3Cproquest_pubme%3E2702187598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725350521&rft_id=info:pmid/35952713&rfr_iscdi=true