An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases
The catalytic asymmetric construction of C sp 3 –C sp 3 bonds remains one of the foremost challenges in organic synthesis 1 . Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation 2 – 5 . However, coupling two distinct C sp 3 electrophiles with hi...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-10, Vol.610 (7931), p.302-307 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 7931 |
container_start_page | 302 |
container_title | Nature (London) |
container_volume | 610 |
creator | Fu, Haigen Cao, Jingzhe Qiao, Tianzhang Qi, Yuyin Charnock, Simon J. Garfinkle, Samuel Hyster, Todd K. |
description | The catalytic asymmetric construction of C
sp
3
–C
sp
3
bonds remains one of the foremost challenges in organic synthesis
1
. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation
2
–
5
. However, coupling two distinct C
sp
3
electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C
sp
3
–C
sp
3
XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.
A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis. |
doi_str_mv | 10.1038/s41586-022-05167-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10157439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702187598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</originalsourceid><addsrcrecordid>eNp9kb9uFDEQxi1ERI7AC1CtRENjGP_3ViiKQoIUkSapLZ93fNlo_2HvIqW7d6CB17snwZeLQFDQzBTz-z7NzEfIGwbvGQj7IUumrKbAOQXFtKHsGVkxaTSV2prnZAXALQUr9DF5mfM9QMGMfEGOhaoVN0ysyJfTofL5oe9xTm2o8iR22--lViGNOVPsMMxpnO7aDqswLlPXDptqyfu62_7AAXfbnzRhs4TZZ8yvyFH0XcbXT_2E3H46vzm7pFfXF5_PTq9oEJbPtBEx6iAF4xZry7XwEhQEo63XteQhrm1tVYzryLVcRwFK-cgBQuO5wboRJ-TjwXda1j02AYc5-c5Nqe19enCjb93fk6G9c5vxm2PAlJGiLg7vnhzS-HXBPLu-zQG7zg84LtlxA5xZo2pb0Lf_oPfjkoZyX6G4EgoUZ4XiB-rxcwnj720YuH1e7pCXK3m5x7zcXiQOolzgYYPpj_V_VL8Az7GaNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725350521</pqid></control><display><type>article</type><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</creator><creatorcontrib>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</creatorcontrib><description>The catalytic asymmetric construction of C
sp
3
–C
sp
3
bonds remains one of the foremost challenges in organic synthesis
1
. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation
2
–
5
. However, coupling two distinct C
sp
3
electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C
sp
3
–C
sp
3
XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.
A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05167-1</identifier><identifier>PMID: 35952713</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/638/77/603 ; 639/638/77/890 ; 82 ; Asymmetry ; Catalysis ; Charge transfer ; Couplings ; Enantiomers ; Enzymes ; Flavin ; Halides ; Humanities and Social Sciences ; Hydrogen ; Hydrogen atoms ; multidisciplinary ; Photoexcitation ; Proteins ; Reductases ; Science ; Science (multidisciplinary) ; Selectivity ; Stereoselectivity</subject><ispartof>Nature (London), 2022-10, Vol.610 (7931), p.302-307</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Oct 13, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</citedby><cites>FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</cites><orcidid>0000-0003-4437-7419 ; 0000-0003-3560-355X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05167-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05167-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fu, Haigen</creatorcontrib><creatorcontrib>Cao, Jingzhe</creatorcontrib><creatorcontrib>Qiao, Tianzhang</creatorcontrib><creatorcontrib>Qi, Yuyin</creatorcontrib><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Garfinkle, Samuel</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The catalytic asymmetric construction of C
sp
3
–C
sp
3
bonds remains one of the foremost challenges in organic synthesis
1
. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation
2
–
5
. However, coupling two distinct C
sp
3
electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C
sp
3
–C
sp
3
XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.
A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</description><subject>140/131</subject><subject>639/638/77/603</subject><subject>639/638/77/890</subject><subject>82</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Charge transfer</subject><subject>Couplings</subject><subject>Enantiomers</subject><subject>Enzymes</subject><subject>Flavin</subject><subject>Halides</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>multidisciplinary</subject><subject>Photoexcitation</subject><subject>Proteins</subject><subject>Reductases</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selectivity</subject><subject>Stereoselectivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kb9uFDEQxi1ERI7AC1CtRENjGP_3ViiKQoIUkSapLZ93fNlo_2HvIqW7d6CB17snwZeLQFDQzBTz-z7NzEfIGwbvGQj7IUumrKbAOQXFtKHsGVkxaTSV2prnZAXALQUr9DF5mfM9QMGMfEGOhaoVN0ysyJfTofL5oe9xTm2o8iR22--lViGNOVPsMMxpnO7aDqswLlPXDptqyfu62_7AAXfbnzRhs4TZZ8yvyFH0XcbXT_2E3H46vzm7pFfXF5_PTq9oEJbPtBEx6iAF4xZry7XwEhQEo63XteQhrm1tVYzryLVcRwFK-cgBQuO5wboRJ-TjwXda1j02AYc5-c5Nqe19enCjb93fk6G9c5vxm2PAlJGiLg7vnhzS-HXBPLu-zQG7zg84LtlxA5xZo2pb0Lf_oPfjkoZyX6G4EgoUZ4XiB-rxcwnj720YuH1e7pCXK3m5x7zcXiQOolzgYYPpj_V_VL8Az7GaNw</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Fu, Haigen</creator><creator>Cao, Jingzhe</creator><creator>Qiao, Tianzhang</creator><creator>Qi, Yuyin</creator><creator>Charnock, Simon J.</creator><creator>Garfinkle, Samuel</creator><creator>Hyster, Todd K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4437-7419</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid></search><sort><creationdate>20221013</creationdate><title>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</title><author>Fu, Haigen ; Cao, Jingzhe ; Qiao, Tianzhang ; Qi, Yuyin ; Charnock, Simon J. ; Garfinkle, Samuel ; Hyster, Todd K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d3ff6c43128e98263a4050c768a6942cfb8985ffbf264bf3055af200cda27e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/131</topic><topic>639/638/77/603</topic><topic>639/638/77/890</topic><topic>82</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Charge transfer</topic><topic>Couplings</topic><topic>Enantiomers</topic><topic>Enzymes</topic><topic>Flavin</topic><topic>Halides</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>multidisciplinary</topic><topic>Photoexcitation</topic><topic>Proteins</topic><topic>Reductases</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selectivity</topic><topic>Stereoselectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haigen</creatorcontrib><creatorcontrib>Cao, Jingzhe</creatorcontrib><creatorcontrib>Qiao, Tianzhang</creatorcontrib><creatorcontrib>Qi, Yuyin</creatorcontrib><creatorcontrib>Charnock, Simon J.</creatorcontrib><creatorcontrib>Garfinkle, Samuel</creatorcontrib><creatorcontrib>Hyster, Todd K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haigen</au><au>Cao, Jingzhe</au><au>Qiao, Tianzhang</au><au>Qi, Yuyin</au><au>Charnock, Simon J.</au><au>Garfinkle, Samuel</au><au>Hyster, Todd K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-10-13</date><risdate>2022</risdate><volume>610</volume><issue>7931</issue><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The catalytic asymmetric construction of C
sp
3
–C
sp
3
bonds remains one of the foremost challenges in organic synthesis
1
. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation
2
–
5
. However, coupling two distinct C
sp
3
electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective C
sp
3
–C
sp
3
XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.
A highly chemoselective and enantioselective cross-electrophile coupling using ‘ene’-reductases is reported, and photoexcited enzymes demonstrate the ability to carry out reactions between electrophiles that are not known for small-molecule catalysis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35952713</pmid><doi>10.1038/s41586-022-05167-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4437-7419</orcidid><orcidid>https://orcid.org/0000-0003-3560-355X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-10, Vol.610 (7931), p.302-307 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10157439 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/131 639/638/77/603 639/638/77/890 82 Asymmetry Catalysis Charge transfer Couplings Enantiomers Enzymes Flavin Halides Humanities and Social Sciences Hydrogen Hydrogen atoms multidisciplinary Photoexcitation Proteins Reductases Science Science (multidisciplinary) Selectivity Stereoselectivity |
title | An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymmetric%20sp3%E2%80%93sp3%20cross-electrophile%20coupling%20using%20%E2%80%98ene%E2%80%99-reductases&rft.jtitle=Nature%20(London)&rft.au=Fu,%20Haigen&rft.date=2022-10-13&rft.volume=610&rft.issue=7931&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05167-1&rft_dat=%3Cproquest_pubme%3E2702187598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725350521&rft_id=info:pmid/35952713&rfr_iscdi=true |