Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity
Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2023-05, Vol.20 (5), p.2545-2555 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2555 |
---|---|
container_issue | 5 |
container_start_page | 2545 |
container_title | Molecular pharmaceutics |
container_volume | 20 |
creator | Czub, Natalia Szlęk, Jakub Pacławski, Adam Klimończyk, Klaudia Puccetti, Matteo Mendyk, Aleksander |
description | Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT). |
doi_str_mv | 10.1021/acs.molpharmaceut.2c01117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10155205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802887893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEakvbV0BmxyaDf-I6WaFhVGilIkrbveU4NzOuEjv4Z9DseAeegRfjSfAww4juWNnWPee71_cUxWuCZwRT8lbpMBvdMK2UH5WGFGdUY0KIeFacEF6xsmYNfX6419Vx8TKER4xpxSk7Ko6ZwAI3_OKk-Dn30fRGGzWgaxthGMwSrIbyvQrQoS9J2WiiimYN6D76pGPy8Ov7j1vvJvBxg-5gyFVnw8pM6JPrYEC98-jWQ2d0NHaJrtKo7B94yO_cZ94G56etCbkeLdw4uWS7gL6ZuEL34F10FvzSaDTPhLWJm7PiRa-GAOf787R4-HD5sLgqbz5_vF7Mb0pVCRzLtiKVbnBDgSuFGyY4Aw6s5pyJHnPesZZTetFXbS20AMgm3KpGNFgR6AQ7Ld7tsFNqR-g02OjVICdvRuU30ikjn1asWcmlW0uCCecU80x4syd49zXlD8vRBJ23qiy4FCStMa1rUTcsS5udVHsXgof-0IdguY1Z5pjlk5jlPubsffXvoAfn31yzgO8EW8ajSz7vPfwH-Dfg6MMR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802887893</pqid></control><display><type>article</type><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><source>MEDLINE</source><source>ACS Publications</source><creator>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</creator><creatorcontrib>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</creatorcontrib><description>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.2c01117</identifier><identifier>PMID: 37070956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Biological Availability ; Humans ; Intestinal Absorption ; Models, Biological ; Pharmaceutical Preparations ; Quantitative Structure-Activity Relationship</subject><ispartof>Molecular pharmaceutics, 2023-05, Vol.20 (5), p.2545-2555</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</citedby><cites>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</cites><orcidid>0000-0003-1537-9650 ; 0000-0002-4394-9115 ; 0000-0003-2801-6197 ; 0000-0001-6660-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.2c01117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.2c01117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37070956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czub, Natalia</creatorcontrib><creatorcontrib>Szlęk, Jakub</creatorcontrib><creatorcontrib>Pacławski, Adam</creatorcontrib><creatorcontrib>Klimończyk, Klaudia</creatorcontrib><creatorcontrib>Puccetti, Matteo</creatorcontrib><creatorcontrib>Mendyk, Aleksander</creatorcontrib><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</description><subject>Artificial Intelligence</subject><subject>Biological Availability</subject><subject>Humans</subject><subject>Intestinal Absorption</subject><subject>Models, Biological</subject><subject>Pharmaceutical Preparations</subject><subject>Quantitative Structure-Activity Relationship</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEakvbV0BmxyaDf-I6WaFhVGilIkrbveU4NzOuEjv4Z9DseAeegRfjSfAww4juWNnWPee71_cUxWuCZwRT8lbpMBvdMK2UH5WGFGdUY0KIeFacEF6xsmYNfX6419Vx8TKER4xpxSk7Ko6ZwAI3_OKk-Dn30fRGGzWgaxthGMwSrIbyvQrQoS9J2WiiimYN6D76pGPy8Ov7j1vvJvBxg-5gyFVnw8pM6JPrYEC98-jWQ2d0NHaJrtKo7B94yO_cZ94G56etCbkeLdw4uWS7gL6ZuEL34F10FvzSaDTPhLWJm7PiRa-GAOf787R4-HD5sLgqbz5_vF7Mb0pVCRzLtiKVbnBDgSuFGyY4Aw6s5pyJHnPesZZTetFXbS20AMgm3KpGNFgR6AQ7Ld7tsFNqR-g02OjVICdvRuU30ikjn1asWcmlW0uCCecU80x4syd49zXlD8vRBJ23qiy4FCStMa1rUTcsS5udVHsXgof-0IdguY1Z5pjlk5jlPubsffXvoAfn31yzgO8EW8ajSz7vPfwH-Dfg6MMR</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Czub, Natalia</creator><creator>Szlęk, Jakub</creator><creator>Pacławski, Adam</creator><creator>Klimończyk, Klaudia</creator><creator>Puccetti, Matteo</creator><creator>Mendyk, Aleksander</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1537-9650</orcidid><orcidid>https://orcid.org/0000-0002-4394-9115</orcidid><orcidid>https://orcid.org/0000-0003-2801-6197</orcidid><orcidid>https://orcid.org/0000-0001-6660-4446</orcidid></search><sort><creationdate>20230501</creationdate><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><author>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Biological Availability</topic><topic>Humans</topic><topic>Intestinal Absorption</topic><topic>Models, Biological</topic><topic>Pharmaceutical Preparations</topic><topic>Quantitative Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czub, Natalia</creatorcontrib><creatorcontrib>Szlęk, Jakub</creatorcontrib><creatorcontrib>Pacławski, Adam</creatorcontrib><creatorcontrib>Klimończyk, Klaudia</creatorcontrib><creatorcontrib>Puccetti, Matteo</creatorcontrib><creatorcontrib>Mendyk, Aleksander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czub, Natalia</au><au>Szlęk, Jakub</au><au>Pacławski, Adam</au><au>Klimończyk, Klaudia</au><au>Puccetti, Matteo</au><au>Mendyk, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>2545</spage><epage>2555</epage><pages>2545-2555</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37070956</pmid><doi>10.1021/acs.molpharmaceut.2c01117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1537-9650</orcidid><orcidid>https://orcid.org/0000-0002-4394-9115</orcidid><orcidid>https://orcid.org/0000-0003-2801-6197</orcidid><orcidid>https://orcid.org/0000-0001-6660-4446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-8384 |
ispartof | Molecular pharmaceutics, 2023-05, Vol.20 (5), p.2545-2555 |
issn | 1543-8384 1543-8392 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10155205 |
source | MEDLINE; ACS Publications |
subjects | Artificial Intelligence Biological Availability Humans Intestinal Absorption Models, Biological Pharmaceutical Preparations Quantitative Structure-Activity Relationship |
title | Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence-Based%20Quantitative%20Structure%E2%80%93Property%20Relationship%20Model%20for%20Predicting%20Human%20Intestinal%20Absorption%20of%20Compounds%20with%20Serotonergic%20Activity&rft.jtitle=Molecular%20pharmaceutics&rft.au=Czub,%20Natalia&rft.date=2023-05-01&rft.volume=20&rft.issue=5&rft.spage=2545&rft.epage=2555&rft.pages=2545-2555&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.2c01117&rft_dat=%3Cproquest_pubme%3E2802887893%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802887893&rft_id=info:pmid/37070956&rfr_iscdi=true |