Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity

Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2023-05, Vol.20 (5), p.2545-2555
Hauptverfasser: Czub, Natalia, Szlęk, Jakub, Pacławski, Adam, Klimończyk, Klaudia, Puccetti, Matteo, Mendyk, Aleksander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2555
container_issue 5
container_start_page 2545
container_title Molecular pharmaceutics
container_volume 20
creator Czub, Natalia
Szlęk, Jakub
Pacławski, Adam
Klimończyk, Klaudia
Puccetti, Matteo
Mendyk, Aleksander
description Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).
doi_str_mv 10.1021/acs.molpharmaceut.2c01117
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10155205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802887893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEakvbV0BmxyaDf-I6WaFhVGilIkrbveU4NzOuEjv4Z9DseAeegRfjSfAww4juWNnWPee71_cUxWuCZwRT8lbpMBvdMK2UH5WGFGdUY0KIeFacEF6xsmYNfX6419Vx8TKER4xpxSk7Ko6ZwAI3_OKk-Dn30fRGGzWgaxthGMwSrIbyvQrQoS9J2WiiimYN6D76pGPy8Ov7j1vvJvBxg-5gyFVnw8pM6JPrYEC98-jWQ2d0NHaJrtKo7B94yO_cZ94G56etCbkeLdw4uWS7gL6ZuEL34F10FvzSaDTPhLWJm7PiRa-GAOf787R4-HD5sLgqbz5_vF7Mb0pVCRzLtiKVbnBDgSuFGyY4Aw6s5pyJHnPesZZTetFXbS20AMgm3KpGNFgR6AQ7Ld7tsFNqR-g02OjVICdvRuU30ikjn1asWcmlW0uCCecU80x4syd49zXlD8vRBJ23qiy4FCStMa1rUTcsS5udVHsXgof-0IdguY1Z5pjlk5jlPubsffXvoAfn31yzgO8EW8ajSz7vPfwH-Dfg6MMR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802887893</pqid></control><display><type>article</type><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><source>MEDLINE</source><source>ACS Publications</source><creator>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</creator><creatorcontrib>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</creatorcontrib><description>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.2c01117</identifier><identifier>PMID: 37070956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Biological Availability ; Humans ; Intestinal Absorption ; Models, Biological ; Pharmaceutical Preparations ; Quantitative Structure-Activity Relationship</subject><ispartof>Molecular pharmaceutics, 2023-05, Vol.20 (5), p.2545-2555</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</citedby><cites>FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</cites><orcidid>0000-0003-1537-9650 ; 0000-0002-4394-9115 ; 0000-0003-2801-6197 ; 0000-0001-6660-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.2c01117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.2c01117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37070956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czub, Natalia</creatorcontrib><creatorcontrib>Szlęk, Jakub</creatorcontrib><creatorcontrib>Pacławski, Adam</creatorcontrib><creatorcontrib>Klimończyk, Klaudia</creatorcontrib><creatorcontrib>Puccetti, Matteo</creatorcontrib><creatorcontrib>Mendyk, Aleksander</creatorcontrib><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</description><subject>Artificial Intelligence</subject><subject>Biological Availability</subject><subject>Humans</subject><subject>Intestinal Absorption</subject><subject>Models, Biological</subject><subject>Pharmaceutical Preparations</subject><subject>Quantitative Structure-Activity Relationship</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEakvbV0BmxyaDf-I6WaFhVGilIkrbveU4NzOuEjv4Z9DseAeegRfjSfAww4juWNnWPee71_cUxWuCZwRT8lbpMBvdMK2UH5WGFGdUY0KIeFacEF6xsmYNfX6419Vx8TKER4xpxSk7Ko6ZwAI3_OKk-Dn30fRGGzWgaxthGMwSrIbyvQrQoS9J2WiiimYN6D76pGPy8Ov7j1vvJvBxg-5gyFVnw8pM6JPrYEC98-jWQ2d0NHaJrtKo7B94yO_cZ94G56etCbkeLdw4uWS7gL6ZuEL34F10FvzSaDTPhLWJm7PiRa-GAOf787R4-HD5sLgqbz5_vF7Mb0pVCRzLtiKVbnBDgSuFGyY4Aw6s5pyJHnPesZZTetFXbS20AMgm3KpGNFgR6AQ7Ld7tsFNqR-g02OjVICdvRuU30ikjn1asWcmlW0uCCecU80x4syd49zXlD8vRBJ23qiy4FCStMa1rUTcsS5udVHsXgof-0IdguY1Z5pjlk5jlPubsffXvoAfn31yzgO8EW8ajSz7vPfwH-Dfg6MMR</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Czub, Natalia</creator><creator>Szlęk, Jakub</creator><creator>Pacławski, Adam</creator><creator>Klimończyk, Klaudia</creator><creator>Puccetti, Matteo</creator><creator>Mendyk, Aleksander</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1537-9650</orcidid><orcidid>https://orcid.org/0000-0002-4394-9115</orcidid><orcidid>https://orcid.org/0000-0003-2801-6197</orcidid><orcidid>https://orcid.org/0000-0001-6660-4446</orcidid></search><sort><creationdate>20230501</creationdate><title>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</title><author>Czub, Natalia ; Szlęk, Jakub ; Pacławski, Adam ; Klimończyk, Klaudia ; Puccetti, Matteo ; Mendyk, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-b414c9092e5aa093753e5e385537f055d3b5226f4b87c7ee4700ba9790a1ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Biological Availability</topic><topic>Humans</topic><topic>Intestinal Absorption</topic><topic>Models, Biological</topic><topic>Pharmaceutical Preparations</topic><topic>Quantitative Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czub, Natalia</creatorcontrib><creatorcontrib>Szlęk, Jakub</creatorcontrib><creatorcontrib>Pacławski, Adam</creatorcontrib><creatorcontrib>Klimończyk, Klaudia</creatorcontrib><creatorcontrib>Puccetti, Matteo</creatorcontrib><creatorcontrib>Mendyk, Aleksander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czub, Natalia</au><au>Szlęk, Jakub</au><au>Pacławski, Adam</au><au>Klimończyk, Klaudia</au><au>Puccetti, Matteo</au><au>Mendyk, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>2545</spage><epage>2555</epage><pages>2545-2555</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37070956</pmid><doi>10.1021/acs.molpharmaceut.2c01117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1537-9650</orcidid><orcidid>https://orcid.org/0000-0002-4394-9115</orcidid><orcidid>https://orcid.org/0000-0003-2801-6197</orcidid><orcidid>https://orcid.org/0000-0001-6660-4446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1543-8384
ispartof Molecular pharmaceutics, 2023-05, Vol.20 (5), p.2545-2555
issn 1543-8384
1543-8392
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10155205
source MEDLINE; ACS Publications
subjects Artificial Intelligence
Biological Availability
Humans
Intestinal Absorption
Models, Biological
Pharmaceutical Preparations
Quantitative Structure-Activity Relationship
title Artificial Intelligence-Based Quantitative Structure–Property Relationship Model for Predicting Human Intestinal Absorption of Compounds with Serotonergic Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence-Based%20Quantitative%20Structure%E2%80%93Property%20Relationship%20Model%20for%20Predicting%20Human%20Intestinal%20Absorption%20of%20Compounds%20with%20Serotonergic%20Activity&rft.jtitle=Molecular%20pharmaceutics&rft.au=Czub,%20Natalia&rft.date=2023-05-01&rft.volume=20&rft.issue=5&rft.spage=2545&rft.epage=2555&rft.pages=2545-2555&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.2c01117&rft_dat=%3Cproquest_pubme%3E2802887893%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802887893&rft_id=info:pmid/37070956&rfr_iscdi=true