Nuclear morphology is a deep learning biomarker of cellular senescence

Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature aging 2022-08, Vol.2 (8), p.742-755
Hauptverfasser: Heckenbach, Indra, Mkrtchyan, Garik V, Ezra, Michael Ben, Bakula, Daniela, Madsen, Jakob Sture, Nielsen, Malte Hasle, Oró, Denise, Osborne, Brenna, Covarrubias, Anthony J, Idda, M Laura, Gorospe, Myriam, Mortensen, Laust, Verdin, Eric, Westendorp, Rudi, Scheibye-Knudsen, Morten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 8
container_start_page 742
container_title Nature aging
container_volume 2
creator Heckenbach, Indra
Mkrtchyan, Garik V
Ezra, Michael Ben
Bakula, Daniela
Madsen, Jakob Sture
Nielsen, Malte Hasle
Oró, Denise
Osborne, Brenna
Covarrubias, Anthony J
Idda, M Laura
Gorospe, Myriam
Mortensen, Laust
Verdin, Eric
Westendorp, Rudi
Scheibye-Knudsen, Morten
description Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.
doi_str_mv 10.1038/s43587-022-00263-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10154217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807915547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-d539e621775f4f61057f2501a5c30217bbe78e7fa5782b1aa1be4c44d1a82df43</originalsourceid><addsrcrecordid>eNpdUctOwzAQtBCIVqU_wAFF4sIl4PUjTk8IVRSQKrjA2XKSTZuSxMVukPr3OLRUwMkr78zsjIaQc6DXQHl64wWXqYopYzGlLOExPyJDliQsTkUij3_NAzL2fkUDSgKnCTslA64AUuBiSGbPXV6jcVFj3Xppa7vYRpWPTFQgrqN-01btIsoq2xj3ji6yZZRjXXd14Hhs0efY5nhGTkpTexzv3xF5m92_Th_j-cvD0_RuHudiojZxIfkEEwZKyVKUCVCpSiYpGJlzGr6zDFWKqjRSpSwDYyBDkQtRgElZUQo-Irc73XWXNViE2xtnar12VbC31dZU-u-mrZZ6YT81UJAiXAgKV3sFZz869BvdVL5PZFq0ndcspWoCUooeevkPurKda0M-zYEyKiRMektsh8qd9d5heXADVPdV6V1VOlSlv6vSPJAufuc4UH6K4V-60o6C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102045194</pqid></control><display><type>article</type><title>Nuclear morphology is a deep learning biomarker of cellular senescence</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Heckenbach, Indra ; Mkrtchyan, Garik V ; Ezra, Michael Ben ; Bakula, Daniela ; Madsen, Jakob Sture ; Nielsen, Malte Hasle ; Oró, Denise ; Osborne, Brenna ; Covarrubias, Anthony J ; Idda, M Laura ; Gorospe, Myriam ; Mortensen, Laust ; Verdin, Eric ; Westendorp, Rudi ; Scheibye-Knudsen, Morten</creator><creatorcontrib>Heckenbach, Indra ; Mkrtchyan, Garik V ; Ezra, Michael Ben ; Bakula, Daniela ; Madsen, Jakob Sture ; Nielsen, Malte Hasle ; Oró, Denise ; Osborne, Brenna ; Covarrubias, Anthony J ; Idda, M Laura ; Gorospe, Myriam ; Mortensen, Laust ; Verdin, Eric ; Westendorp, Rudi ; Scheibye-Knudsen, Morten</creatorcontrib><description>Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&amp;E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.</description><identifier>ISSN: 2662-8465</identifier><identifier>EISSN: 2662-8465</identifier><identifier>DOI: 10.1038/s43587-022-00263-3</identifier><identifier>PMID: 37118134</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Aging ; Aging, Premature ; Animals ; Biomarkers ; Cellular Senescence - physiology ; Deep Learning ; Fibroblasts ; Humans ; Mice ; Morphology ; Neural networks ; Senescence</subject><ispartof>Nature aging, 2022-08, Vol.2 (8), p.742-755</ispartof><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-d539e621775f4f61057f2501a5c30217bbe78e7fa5782b1aa1be4c44d1a82df43</citedby><cites>FETCH-LOGICAL-c497t-d539e621775f4f61057f2501a5c30217bbe78e7fa5782b1aa1be4c44d1a82df43</cites><orcidid>0000-0002-2348-5747 ; 0000-0002-0197-3010 ; 0000-0001-5439-3434 ; 0000-0002-6637-1280 ; 0000-0002-2841-7284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37118134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heckenbach, Indra</creatorcontrib><creatorcontrib>Mkrtchyan, Garik V</creatorcontrib><creatorcontrib>Ezra, Michael Ben</creatorcontrib><creatorcontrib>Bakula, Daniela</creatorcontrib><creatorcontrib>Madsen, Jakob Sture</creatorcontrib><creatorcontrib>Nielsen, Malte Hasle</creatorcontrib><creatorcontrib>Oró, Denise</creatorcontrib><creatorcontrib>Osborne, Brenna</creatorcontrib><creatorcontrib>Covarrubias, Anthony J</creatorcontrib><creatorcontrib>Idda, M Laura</creatorcontrib><creatorcontrib>Gorospe, Myriam</creatorcontrib><creatorcontrib>Mortensen, Laust</creatorcontrib><creatorcontrib>Verdin, Eric</creatorcontrib><creatorcontrib>Westendorp, Rudi</creatorcontrib><creatorcontrib>Scheibye-Knudsen, Morten</creatorcontrib><title>Nuclear morphology is a deep learning biomarker of cellular senescence</title><title>Nature aging</title><addtitle>Nat Aging</addtitle><description>Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&amp;E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.</description><subject>Aging</subject><subject>Aging, Premature</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Cellular Senescence - physiology</subject><subject>Deep Learning</subject><subject>Fibroblasts</subject><subject>Humans</subject><subject>Mice</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Senescence</subject><issn>2662-8465</issn><issn>2662-8465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdUctOwzAQtBCIVqU_wAFF4sIl4PUjTk8IVRSQKrjA2XKSTZuSxMVukPr3OLRUwMkr78zsjIaQc6DXQHl64wWXqYopYzGlLOExPyJDliQsTkUij3_NAzL2fkUDSgKnCTslA64AUuBiSGbPXV6jcVFj3Xppa7vYRpWPTFQgrqN-01btIsoq2xj3ji6yZZRjXXd14Hhs0efY5nhGTkpTexzv3xF5m92_Th_j-cvD0_RuHudiojZxIfkEEwZKyVKUCVCpSiYpGJlzGr6zDFWKqjRSpSwDYyBDkQtRgElZUQo-Irc73XWXNViE2xtnar12VbC31dZU-u-mrZZ6YT81UJAiXAgKV3sFZz869BvdVL5PZFq0ndcspWoCUooeevkPurKda0M-zYEyKiRMektsh8qd9d5heXADVPdV6V1VOlSlv6vSPJAufuc4UH6K4V-60o6C</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Heckenbach, Indra</creator><creator>Mkrtchyan, Garik V</creator><creator>Ezra, Michael Ben</creator><creator>Bakula, Daniela</creator><creator>Madsen, Jakob Sture</creator><creator>Nielsen, Malte Hasle</creator><creator>Oró, Denise</creator><creator>Osborne, Brenna</creator><creator>Covarrubias, Anthony J</creator><creator>Idda, M Laura</creator><creator>Gorospe, Myriam</creator><creator>Mortensen, Laust</creator><creator>Verdin, Eric</creator><creator>Westendorp, Rudi</creator><creator>Scheibye-Knudsen, Morten</creator><general>Nature Publishing Group</general><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2348-5747</orcidid><orcidid>https://orcid.org/0000-0002-0197-3010</orcidid><orcidid>https://orcid.org/0000-0001-5439-3434</orcidid><orcidid>https://orcid.org/0000-0002-6637-1280</orcidid><orcidid>https://orcid.org/0000-0002-2841-7284</orcidid></search><sort><creationdate>20220801</creationdate><title>Nuclear morphology is a deep learning biomarker of cellular senescence</title><author>Heckenbach, Indra ; Mkrtchyan, Garik V ; Ezra, Michael Ben ; Bakula, Daniela ; Madsen, Jakob Sture ; Nielsen, Malte Hasle ; Oró, Denise ; Osborne, Brenna ; Covarrubias, Anthony J ; Idda, M Laura ; Gorospe, Myriam ; Mortensen, Laust ; Verdin, Eric ; Westendorp, Rudi ; Scheibye-Knudsen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-d539e621775f4f61057f2501a5c30217bbe78e7fa5782b1aa1be4c44d1a82df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Aging, Premature</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Cellular Senescence - physiology</topic><topic>Deep Learning</topic><topic>Fibroblasts</topic><topic>Humans</topic><topic>Mice</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Senescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckenbach, Indra</creatorcontrib><creatorcontrib>Mkrtchyan, Garik V</creatorcontrib><creatorcontrib>Ezra, Michael Ben</creatorcontrib><creatorcontrib>Bakula, Daniela</creatorcontrib><creatorcontrib>Madsen, Jakob Sture</creatorcontrib><creatorcontrib>Nielsen, Malte Hasle</creatorcontrib><creatorcontrib>Oró, Denise</creatorcontrib><creatorcontrib>Osborne, Brenna</creatorcontrib><creatorcontrib>Covarrubias, Anthony J</creatorcontrib><creatorcontrib>Idda, M Laura</creatorcontrib><creatorcontrib>Gorospe, Myriam</creatorcontrib><creatorcontrib>Mortensen, Laust</creatorcontrib><creatorcontrib>Verdin, Eric</creatorcontrib><creatorcontrib>Westendorp, Rudi</creatorcontrib><creatorcontrib>Scheibye-Knudsen, Morten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckenbach, Indra</au><au>Mkrtchyan, Garik V</au><au>Ezra, Michael Ben</au><au>Bakula, Daniela</au><au>Madsen, Jakob Sture</au><au>Nielsen, Malte Hasle</au><au>Oró, Denise</au><au>Osborne, Brenna</au><au>Covarrubias, Anthony J</au><au>Idda, M Laura</au><au>Gorospe, Myriam</au><au>Mortensen, Laust</au><au>Verdin, Eric</au><au>Westendorp, Rudi</au><au>Scheibye-Knudsen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear morphology is a deep learning biomarker of cellular senescence</atitle><jtitle>Nature aging</jtitle><addtitle>Nat Aging</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2</volume><issue>8</issue><spage>742</spage><epage>755</epage><pages>742-755</pages><issn>2662-8465</issn><eissn>2662-8465</eissn><abstract>Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&amp;E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><pmid>37118134</pmid><doi>10.1038/s43587-022-00263-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2348-5747</orcidid><orcidid>https://orcid.org/0000-0002-0197-3010</orcidid><orcidid>https://orcid.org/0000-0001-5439-3434</orcidid><orcidid>https://orcid.org/0000-0002-6637-1280</orcidid><orcidid>https://orcid.org/0000-0002-2841-7284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-8465
ispartof Nature aging, 2022-08, Vol.2 (8), p.742-755
issn 2662-8465
2662-8465
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10154217
source MEDLINE; Alma/SFX Local Collection
subjects Aging
Aging, Premature
Animals
Biomarkers
Cellular Senescence - physiology
Deep Learning
Fibroblasts
Humans
Mice
Morphology
Neural networks
Senescence
title Nuclear morphology is a deep learning biomarker of cellular senescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20morphology%20is%20a%20deep%20learning%20biomarker%20of%20cellular%20senescence&rft.jtitle=Nature%20aging&rft.au=Heckenbach,%20Indra&rft.date=2022-08-01&rft.volume=2&rft.issue=8&rft.spage=742&rft.epage=755&rft.pages=742-755&rft.issn=2662-8465&rft.eissn=2662-8465&rft_id=info:doi/10.1038/s43587-022-00263-3&rft_dat=%3Cproquest_pubme%3E2807915547%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102045194&rft_id=info:pmid/37118134&rfr_iscdi=true